Skip to main content

New NSAID Targets and Derivatives for Colorectal Cancer Chemoprevention

  • Chapter
  • First Online:
Prospects for Chemoprevention of Colorectal Neoplasia

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 191))

Abstract

Clinical and preclinical studies provide strong evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) can prevent numerous types of cancers, especially colorectal cancer. Unfortunately, the depletion of physiologically important prostaglandins due to cyclooxygenase (COX) inhibition results in potentially fatal toxicities that preclude the long-term use of NSAIDs for cancer chemoprevention. While studies have shown an involvement of COX-2 in colorectal tumorigenesis, other studies suggest that a COX-independent target may be at least partially responsible for the antineoplastic activity of NSAIDs. For example, certain NSAID derivatives have been identified that do not inhibit COX-2 but have demonstrated efficacy to suppress carcinogenesis with potential for reduced toxicity. A number of alternative targets have also been reported to account for the tumor cell growth inhibitory activity of NSAIDs, including the inhibition of cyclic guanosine monophosphate phosphodiesterases (cGMP PDEs), generation of reactive oxygen species (ROS), the suppression of the apoptosis inhibitor protein, survivin, and others. Here, we review several promising mechanisms that are being targeted to develop safer and more efficacious NSAID derivatives for colon cancer chemoprevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts DS et al (1995) Do NSAIDs exert their colon cancer chemoprevention activities through the inhibition of mucosal prostaglandin synthetase? J Cell Biochem Suppl 22:18–23

    Article  CAS  PubMed  Google Scholar 

  • Altieri DC (2003a) Survivin in apoptosis control and cell cycle regulation in cancer. Prog Cell Cycle Res 5:447–452

    PubMed  Google Scholar 

  • Altieri DC (2003b) Survivin and apoptosis control. Adv Cancer Res 88:31–52

    Article  CAS  PubMed  Google Scholar 

  • Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3(8):917–921

    Article  CAS  PubMed  Google Scholar 

  • Arber N et al (2006) Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med 355(9):885–895

    Article  CAS  PubMed  Google Scholar 

  • Baek SJ, Horowitz JM, Eling TE (2001a) Molecular cloning and characterization of human nonsteroidal anti-inflammatory drug-activated gene promoter. Basal transcription is mediated by Sp1 and Sp3. J Biol Chem 276(36):33384–33392

    Article  CAS  PubMed  Google Scholar 

  • Baek SJ et al (2001b) Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol Pharmacol 59(4):901–908

    CAS  PubMed  Google Scholar 

  • Baek SJ et al (2002) Dual function of nonsteroidal anti-inflammatory drugs (NSAIDs): inhibition of cyclooxygenase and induction of NSAID-activated gene. J Pharmacol Exp Ther 301(3):1126–1131

    Article  CAS  PubMed  Google Scholar 

  • Baron JA et al (2006) A randomized trial of rofecoxib for the chemoprevention of colorectal adenomas. Gastroenterology 131(6):1674–1682

    Article  CAS  PubMed  Google Scholar 

  • Beavo JA (1995) Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 75(4):725–748

    CAS  PubMed  Google Scholar 

  • Bertagnolli MM et al (2006) Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 355(9):873–884

    Article  CAS  PubMed  Google Scholar 

  • Carmell MA et al (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16(21):2733–2742

    Article  CAS  PubMed  Google Scholar 

  • Carter CA, Ip MM, Ip C (1989) A comparison of the effects of the prostaglandin synthesis inhibitors indomethacin and carprofen on 7,12-dimethylbenz[a]anthracene-induced mammary tumorigenesis in rats fed different amounts of essential fatty acid. Carcinogenesis 10(8):1369–1374

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti AK et al (2010) Progress in COX-2 inhibitors: a journey so far. Curr Med Chem 17(15):1563–1593

    Article  CAS  PubMed  Google Scholar 

  • Chan TA (2002) Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention. Lancet Oncol 3(3):166–174

    Article  CAS  PubMed  Google Scholar 

  • de Mello MC, Bayer BM, Beaven MA (1980) Evidence that prostaglandins do not have a role in the cytostatic action of anti-inflammatory drugs. Biochem Pharmacol 29(3):311–318

    Article  PubMed  Google Scholar 

  • DuBois RN et al (1998) The nuclear eicosanoid receptor, PPARgamma, is aberrantly expressed in colonic cancers. Carcinogenesis 19(1):49–53

    Article  CAS  PubMed  Google Scholar 

  • Eberhart CE et al (1994) Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107(4):1183–1188

    CAS  PubMed  Google Scholar 

  • Elder DJ et al (1997) Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug: independence from COX-2 protein expression. Clin Cancer Res 3(10):1679–1683

    CAS  PubMed  Google Scholar 

  • Erickson BA et al (1999) The effect of selective cyclooxygenase inhibitors on intestinal epithelial cell mitogenesis. J Surg Res 81(1):101–107

    Article  CAS  PubMed  Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs–microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

    Article  CAS  PubMed  Google Scholar 

  • Frein D et al (2005) Redox regulation: a new challenge for pharmacology. Biochem Pharmacol 70(6):811–823

    Article  CAS  PubMed  Google Scholar 

  • Fujita T et al (1998) Size- and invasion-dependent increase in cyclooxygenase 2 levels in human colorectal carcinomas. Cancer Res 58(21):4823–4826

    CAS  PubMed  Google Scholar 

  • Genestra M (2007) Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 19(9):1807–1819

    Article  CAS  PubMed  Google Scholar 

  • Giardiello FM et al (1993) Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 328(18):1313–1316

    Article  CAS  PubMed  Google Scholar 

  • Grosch S et al (2001) COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. Faseb J 15(14):2742–2744

    CAS  PubMed  Google Scholar 

  • Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Hanif R et al (1996) Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol 52(2):237–245

    Article  CAS  PubMed  Google Scholar 

  • Harris RE (2009) Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology 17(2):55–67

    Article  CAS  PubMed  Google Scholar 

  • Hoffman WH et al (2002) Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277(5):3247–3257

    Article  CAS  PubMed  Google Scholar 

  • Huang GL et al (2009) Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol Rep 21(3):673–679

    CAS  PubMed  Google Scholar 

  • Huang L et al (2010) Phospho-sulindac (OXT-922) inhibits the growth of human colon cancer cell lines: a redox/polyamine-dependent effect. Carcinogenesis 31(11):1982–1990

    Article  CAS  PubMed  Google Scholar 

  • Kalgutkar AS et al (2000) Ester and amide derivatives of the nonsteroidal antiinflammatory drug, indomethacin, as selective cyclooxygenase-2 inhibitors. J Med Chem 43(15):2860–2870

    Article  CAS  PubMed  Google Scholar 

  • Kalgutkar AS et al (2002) Amide derivatives of meclofenamic acid as selective cyclooxygenase-2 inhibitors. Bioorg Med Chem Lett 12(4):521–524

    Article  CAS  PubMed  Google Scholar 

  • Kardosh A et al (2005) Multitarget inhibition of drug-resistant multiple myeloma cell lines by dimethyl-celecoxib (DMC), a non-COX-2 inhibitory analog of celecoxib. Blood 106(13):4330–4338

    Article  CAS  PubMed  Google Scholar 

  • Kashfi K, Rigas B (2005) Is COX-2 a ‘collateral’ target in cancer prevention? Biochem Soc Trans 33(Pt 4):724–727

    CAS  PubMed  Google Scholar 

  • Kashfi K, Rigas B (2007) The mechanism of action of nitric oxide-donating aspirin. Biochem Biophys Res Commun 358(4):1096–1101

    Article  CAS  PubMed  Google Scholar 

  • Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267

    Article  CAS  PubMed  Google Scholar 

  • Konduri S et al (2009) Tolfenamic acid enhances pancreatic cancer cell and tumor response to radiation therapy by inhibiting survivin protein expression. Mol Cancer Ther 8(3):533–542

    Article  CAS  PubMed  Google Scholar 

  • Kusuhara H et al (1998) Induction of apoptotic DNA fragmentation by nonsteroidal anti-inflammatory drugs in cultured rat gastric mucosal cells. Eur J Pharmacol 360(2–3):273–280

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre AM et al (1998) Activation of the peroxisome proliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6 J-APCMin/+ mice. Nat Med 4(9):1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Lehmann JM et al (1997) Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 272(6):3406–3410

    Article  CAS  PubMed  Google Scholar 

  • Li F (2005) Role of survivin and its splice variants in tumorigenesis. Br J Cancer 92(2):212–216

    CAS  PubMed  Google Scholar 

  • Lincoln TM, Cornwell TL (1993) Intracellular cyclic GMP receptor proteins. Faseb J 7(2):328–338

    CAS  PubMed  Google Scholar 

  • Ljungdahl S, Shoshan MC, Linder S (1997) Inhibition of the growth of 12 V-ras-transformed rat fibroblasts by acetylsalicylic acid correlates with inhibition of NF-kappa B. Anticancer Drugs 8(1):62–66

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688

    Article  CAS  PubMed  Google Scholar 

  • Ma L et al (2010a) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28(4):341–347

    Article  CAS  PubMed  Google Scholar 

  • Ma L et al (2010b) MiR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12(3):247–256

    CAS  PubMed  Google Scholar 

  • Mackenzie GG et al (2010) Phospho-sulindac (OXT-328), a novel sulindac derivative, is safe and effective in colon cancer prevention in mice. Gastroenterology 139(4):1320–1332

    Article  CAS  PubMed  Google Scholar 

  • Mueller E et al (1998) Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1(3):465–470

    Article  CAS  PubMed  Google Scholar 

  • Nakajima G et al (2006) Non-coding microRNAs hsa-let-7 g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics 3(5):317–324

    CAS  PubMed  Google Scholar 

  • Oshima M et al (1996) Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87(5):803–809

    Article  CAS  PubMed  Google Scholar 

  • Piazza GA et al (1995) Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res 55(14):3110–3116

    CAS  PubMed  Google Scholar 

  • Piazza GA et al (1997a) Apoptosis primarily accounts for the growth-inhibitory properties of sulindac metabolites and involves a mechanism that is independent of cyclooxygenase inhibition, cell cycle arrest, and p53 induction. Cancer Res 57(12):2452–2459

    CAS  PubMed  Google Scholar 

  • Piazza GA et al (1997b) Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels. Cancer Res 57(14):2909–2915

    CAS  PubMed  Google Scholar 

  • Piazza GA et al (2009) A novel sulindac derivative that does not inhibit cyclooxygenases but potently inhibits colon tumor cell growth and induces apoptosis with antitumor activity. Cancer Prev Res (Phila Pa) 2(6):572–580

    Article  CAS  Google Scholar 

  • Pyrko P et al (2006) Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC), in tumor cells in vitro and in vivo. Mol Cancer 5:19

    Article  PubMed  Google Scholar 

  • Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18(49):6938–6947

    Article  CAS  PubMed  Google Scholar 

  • Rigas B, Kashfi K (2004) Nitric-oxide-donating NSAIDs as agents for cancer prevention. Trends Mol Med 10(7):324–330

    Article  CAS  PubMed  Google Scholar 

  • Rigas B, Kozoni V (2008) The novel phenylester anticancer compounds: Study of a derivative of aspirin (phoshoaspirin). Int J Oncol 32(1):97–100

    CAS  PubMed  Google Scholar 

  • Rigas B, Williams JL (2008) NO-donating NSAIDs and cancer: an overview with a note on whether NO is required for their action. Nitric Oxide 19(2):199–204

    Article  CAS  PubMed  Google Scholar 

  • Saez E et al (1998) Activators of the nuclear receptor PPARgamma enhance colon polyp formation. Nat Med 4(9):1058–1061

    Article  CAS  PubMed  Google Scholar 

  • Sawaoka H et al (1998) Effects of NSAIDs on proliferation of gastric cancer cells in vitro: possible implication of cyclooxygenase-2 in cancer development. J Clin Gastroenterol 27(Suppl 1):S47–S52

    Article  PubMed  Google Scholar 

  • Schwenger P et al (1998) Activation of p38 mitogen-activated protein kinase by sodium salicylate leads to inhibition of tumor necrosis factor-induced IkappaB alpha phosphorylation and degradation. Mol Cell Biol 18(1):78–84

    CAS  PubMed  Google Scholar 

  • Shailubhai K et al (2000) Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res 60(18):5151–5157

    CAS  PubMed  Google Scholar 

  • Shiff SJ, Rigas B (1999) The role of cyclooxygenase inhibition in the antineoplastic effects of nonsteroidal antiinflammatory drugs (NSAIDs). J Exp Med 190(4):445–450

    Article  CAS  PubMed  Google Scholar 

  • Silvola J et al (1982) Effects of nonsteroidal anti-inflammatory drugs on rat gastric mucosal phosphodiesterase activity. Agents Actions 12(4):516–520

    Article  CAS  PubMed  Google Scholar 

  • Soh JW et al (2000) Cyclic GMP mediates apoptosis induced by sulindac derivatives via activation of c-Jun NH2-terminal kinase 1. Clin Cancer Res 6(10):4136–4141

    CAS  PubMed  Google Scholar 

  • Soh JW et al (2008) Celecoxib-induced growth inhibition in SW480 colon cancer cells is associated with activation of protein kinase G. Mol Carcinog 47(7):519–525

    Article  CAS  PubMed  Google Scholar 

  • Song B et al (2010) MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res 29:29

    Article  CAS  PubMed  Google Scholar 

  • Sonnenburg WK, Beavo JA (1994) Cyclic GMP and regulation of cyclic nucleotide hydrolysis. Adv Pharmacol 26:87–114

    Article  CAS  PubMed  Google Scholar 

  • Steinbach G et al (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342(26):1946–1952

    Article  CAS  PubMed  Google Scholar 

  • Sun Y et al (2011) Oxidative stress mediates through apoptosis the anticancer effect of phospho-NSAIDs: implications for the role of oxidative stress in the action of anticancer agents. J Pharmacol Exp Ther 338(3):775–783

    Article  CAS  PubMed  Google Scholar 

  • Thompson WJ et al (2000) Exisulind induction of apoptosis involves guanosine 3’,5’-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated beta-catenin. Cancer Res 60(13):3338–3342

    CAS  PubMed  Google Scholar 

  • Thun MJ, Henley SJ, Patrono C (2002) Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 94(4):252–266

    Article  CAS  PubMed  Google Scholar 

  • Tinsley HN et al (2009) Sulindac sulfide selectively inhibits growth and induces apoptosis of human breast tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic GMP, and activation of protein kinase G. Mol Cancer Ther 8(12):3331–3340

    Article  CAS  PubMed  Google Scholar 

  • Tinsley HN et al (2010) Colon tumor cell growth-inhibitory activity of sulindac sulfide and other nonsteroidal anti-inflammatory drugs is associated with phosphodiesterase 5 inhibition. Cancer Prev Res (Phila) 3(10):1303–1313

    Article  CAS  Google Scholar 

  • Tinsley HN et al (2011) Inhibition of PDE5 by Sulindac Sulfide Selectively Induces Apoptosis and Attenuates Oncogenic Wnt/{beta}-Catenin-Mediated Transcription in Human Breast Tumor Cells. Cancer Prev Res (Phila) 4(8):1275–1284

    Article  CAS  Google Scholar 

  • Toyokuni S et al (1995) Persistent oxidative stress in cancer. FEBS Lett 358(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Tsujii M et al (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93(5):705–716

    Article  CAS  PubMed  Google Scholar 

  • Vane JR, Botting RM (1998) Mechanism of action of antiinflammatory drugs. Int J Tissue React 20(1):3–15

    CAS  PubMed  Google Scholar 

  • Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120

    Article  CAS  PubMed  Google Scholar 

  • Warner TD et al (1999) Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci U S A 96(13):7563–7568

    Article  CAS  PubMed  Google Scholar 

  • Williams JL et al (2004) NO-donating aspirin inhibits intestinal carcinogenesis in Min (APC(Min/+)) mice. Biochem Biophys Res Commun 313(3):784–788

    Article  CAS  PubMed  Google Scholar 

  • Xi Y et al (2006) Prognostic values of microRNAs in colorectal cancer. Biomark Insights 2:113–121

    PubMed  Google Scholar 

  • Xie G et al (2011) Phospho-ibuprofen (MDC-917) is a novel agent against colon cancer: efficacy, metabolism, and pharmacokinetics in mouse models. J Pharmacol Exp Ther 337(3):876–886

    Article  CAS  PubMed  Google Scholar 

  • Yeh RK et al (2004) NO-donating nonsteroidal antiinflammatory drugs (NSAIDs) inhibit colon cancer cell growth more potently than traditional NSAIDs: a general pharmacological property? Biochem Pharmacol 67(12):2197–2205

    Article  CAS  PubMed  Google Scholar 

  • Yin MJ, Yamamoto Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396(6706):77–80

    Article  CAS  PubMed  Google Scholar 

  • Yu Z et al (2010) MicroRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci U S A 107(18):8231–8236

    Article  CAS  PubMed  Google Scholar 

  • Zaffaroni N, Pennati M, Daidone MG (2005) Survivin as a target for new anticancer interventions. J Cell Mol Med 9(2):360–372

    Article  CAS  PubMed  Google Scholar 

  • Zhu B et al (2005) Suppression of cyclic GMP-specific phosphodiesterase 5 promotes apoptosis and inhibits growth in HT29 cells. J Cell Biochem 94(2):336–350

    Article  CAS  PubMed  Google Scholar 

  • Zhu S et al (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18(3):350–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding provided by NIH grants R01 CA131378 and R01 CA148817 and a UAB Breast Cancer SPORE grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Piazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tinsley, H.N. et al. (2013). New NSAID Targets and Derivatives for Colorectal Cancer Chemoprevention. In: Chan, A., Detering, E. (eds) Prospects for Chemoprevention of Colorectal Neoplasia. Recent Results in Cancer Research, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30331-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30331-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30330-2

  • Online ISBN: 978-3-642-30331-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics