Skip to main content
  • 1308 Accesses

Zusammenfassung

Die altersabhängige Makuladegeneration kann sich in sehr unterschiedlichen Formen am hinteren Augenpol manifestieren. Dabei unterliegen die verschiedenen Befunde Veränderungen mit der Zeit, d. h. es handelt sich um dynamische Prozesse, was bei der Momentaufnahme einer Funduskopie nicht immer evident ist. Zu unterscheiden ist ein Frühstadium der Erkrankung, das durch Drusen und/oder irreguläre fokale Hyper- oder Hypopigmentierungen gekennzeichnet ist, und ein Spätstadium, das choroidale Neovaskularisationen (CNV), Abhebungen des retinalen Pigmentepithels (RPE), Risse des RPE oder eine geographische Atrophie aufweisen kann.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Age-Related Eye Disease Study Research Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119:1417–1436

    Google Scholar 

  2. Arnold JJ, Sarks SH, Killingsworth MC, Sarks JP (1995) Reticular pseudodrusen: a risk factor in age-related maculopathy. Retina 15:183–191

    Article  PubMed  CAS  Google Scholar 

  3. Barondes M, Pauleikhoff D, Chisholm IC, Minessian D, Bird AC (1986) Bilaterality of drusen. Br J Ophthalmol 74:180–182

    Article  Google Scholar 

  4. Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, de Jong PT, Klaver CC, Klein BE, Klein R, et al. (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv Ophthalmol 39:367–374

    Article  PubMed  CAS  Google Scholar 

  5. Brown B, Lovie-Kitchin J (1987) Contrast-sensitivity in central and paracentral retina in age-related macular maculopathy. Clin Exper Optom 7:145–148

    Article  Google Scholar 

  6. Curcio CA, Millican CL (1999) Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch Ophthalmol 117:329–339

    PubMed  CAS  Google Scholar 

  7. Farwick A, Wellmann J, Stoll M, Pauleikhoff D, Hense HW (2010) Susceptibility genes and progression in age-related maculopathy: a study of single eyes. Invest Ophthalmol Vis Sci 51:731–736

    Article  PubMed  Google Scholar 

  8. Gass JD, Jallow S, Davis B (1985) Adult vitelliform macular detachment occurring in patients with basal laminar drusen. Am J Ophthalm 99:445–459

    CAS  Google Scholar 

  9. Holz FG, Wolfensberger TJ, Piguet B, Gross-Jendroska B, Wells JA, Minassian DC, Chisholm IH, Bird AC (1994) Bilateral macular drusen in age-related macular degeneration: prognosis and risk factors. Ophthalmology 101:1522–1528

    PubMed  CAS  Google Scholar 

  10. Holz FG, Gross-Jendroska M, Eckstein A, Hog CR, Arden GB, Bird AC (1995) Colour contrast sensitivity in patients with age-related Bruch’s membrane changes. German J Ophthalmol 4:336–341

    CAS  Google Scholar 

  11. Katta S, Kaur I, Chakrabarti S (2009) The molecular genetic basis of age-related macular degeneration: an overview. J Genet 88:425–449

    Article  PubMed  CAS  Google Scholar 

  12. Klein R, Klein BE, Tomany SC, Meuer SM, Huang GH (2002) Tenyear incidence and progression of age-related maculopathy: The Beaver Dam Eye Study. Ophthalmology 109:1767–1779

    Article  PubMed  Google Scholar 

  13. Lommatzsch A, Hermans P, Müller KD, Bornfeld N, Bird AC, Pauleikhoff D (2008) Are low inflammatory reactions involved in exudative age-related macular degeneration? Morphological and immunhistochemical analysis of AMD associated with basal deposits. Graefes Arch Clin Exp Ophthalmol 246:803–810

    Article  PubMed  CAS  Google Scholar 

  14. Pauleikhoff D, Barondes MJ, Minessian D, Chisholm IH, Bird AC (1990a) Drusen as risk factors in age-related macular disease. Am J Ophthalmol 109:38–43

    CAS  Google Scholar 

  15. Pauleikhoff D, Chen JC, Chisholm IH, Bird AC (1990b) Choroidal perfusion abnormality with age-related Bruch‘s membrane change. Am J Opthalmol 109:211–217

    CAS  Google Scholar 

  16. Pauleikhoff D, Zuels S, Sheraidah G, Bird AC (1992) Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology 99:1548–1553

    PubMed  CAS  Google Scholar 

  17. Piguet B, Palmvang IB, Chisholm IH, Minassian D, Bird AC (1992) Evolution of age-related macular degeneration with choroidal perfusion abnormality. Am J Ophthalmol 113:657–663

    PubMed  CAS  Google Scholar 

  18. Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P, Meitinger T, Weber BH (2005) Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet 14:3227–3236

    Article  PubMed  CAS  Google Scholar 

  19. Rudolf M, Malek G, Messinger JD, Clark ME, Wang L, Curcio CA (2008) Sub-retinal drusenoid deposits in human retina: organization and composition. Exp Eye Res 87:402–408

    Article  PubMed  CAS  Google Scholar 

  20. Russell SR, Mullins RF, Schneider BL, Hageman GS (2000) Location, substructure, and composition of basal laminar drusen compared with drusen associated with aging and age-related macular degeneration. Am J Ophthalmol 129:205–214

    Article  PubMed  CAS  Google Scholar 

  21. Sarks SH, Van Driel D, Maxwell L, Killingsworth M (1980) Softening of drusen and subretinal neovascularization. Trans Ophthalmol Soc UK 100:414–422

    PubMed  CAS  Google Scholar 

  22. Schmitz-Valckenberg S, Alten F, Steinberg JS, Jaffe GJ, Fleckenstein M, Mukesh BN, Hohman TC, Holz FG for the GAP-Study Group (2011) Reticular drusen associated with geographic atrophy in age-related macular degeneration. . Invest Ophthalmol Vis Sci, online publiziert: 15.04.2011

    Google Scholar 

  23. Schmitz-Valckenberg S, Steinberg JS, Fleckenstein M, Visvalingam S, Brinkmann CK, Holz FG (2010) Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration. Ophthalmology 117:1169–1176

    Article  PubMed  Google Scholar 

  24. Scilley K, Jackson GR, Cideciyan AV, Maguire MG, Jacobson SG, Owsley C (2002) Early age-related maculopathy and self-reported visual difficulty in daily life. Ophthalmology 109:1235–1242

    Article  PubMed  Google Scholar 

  25. Seddon JM, Francis PJ, George S, Schultz DW, Rosner B, Klein ML (2007) Association of CFH Y402H and LOC387715 A69S with progression of age-related macular degeneration. JAMA 297:1793–1800

    Article  PubMed  CAS  Google Scholar 

  26. Spaide RF, Curcio CA (2010) Drusen characterization with multimodal imaging. Retina 30: 1441–1454

    Article  PubMed  Google Scholar 

  27. Steinmetz RL, Haimovici R, Jubb C, Fitzke FW, Bird AC (1993) Symptomatic abnormalities of dark adaptation in patients with agerelated Bruch’s membrane change. Br J Ophthalmol 77:549–554

    Article  PubMed  CAS  Google Scholar 

  28. Van Leeuwen R, Klaver CC, Vingerling JR, Hofman A, de Jong PT (2003) The risk and natural course of age-related maculopathy: follow-up at 6 1/2 years in the Rotterdam study. Arch Ophthalmol 121:519–526

    Article  PubMed  Google Scholar 

  29. Wang L, Clark ME, Crossman DK, Kojima K, Messinger JD, Mobley JA, Curcio CA (2010) Abundant lipid and protein components of drusen. PLoS ONE 5 (4):e10329

    Article  PubMed  Google Scholar 

  30. Wasmuth S, Lueck K, Baehler H, Lommatzsch A, Pauleikhoff D (2009) Increased vitronectin production by complement-stimulated human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 50:5304–5309

    Article  PubMed  Google Scholar 

  31. Zweifel SA, Spaide RF, Curcio CA, Malek G, Imamura Y (2010) Reticular pseudodrusen are subretinal drusenoid deposits. Ophthalmology 117:303–312

    Article  PubMed  Google Scholar 

  32. Zweifel SA, Imamura Y, Spaide TC, Fujiwara T, Spaide RF (2010) Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. Ophthalmology 117:1775–1781

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dietzel, M., Pauleikhoff, D., Holz, F.G., Bird, A.C. (2011). Frühe AMD. In: Altersabhängige Makuladegeneration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20870-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20870-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20869-0

  • Online ISBN: 978-3-642-20870-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics