Skip to main content

Zusammenfassung

Das retinale Pigmentepithel (PRE) grenzt mit seiner Basalmembran an die Bruch-Membran und Kapillaren der Aderhaut (Choriokapillaris ). Apikal steht es mit seinen Mikrowellen in engem Kontakt zu den Photorezeptoraußensegmenten. In einem komplizierten Stoffwechselaustausch zwischen Netzhaut und Aderhaut kommt dem RPE eine Schlüsselfunktion zu. Neben der Aufbereitung des Sehpigments im Sehzyklus werden die Membranscheiben der Photorezeptoraußensegmente durch die RPE-Zelle phagozytiert und in Richtung Choriokapillaris abgegeben. Weiterhin reguliert die Pumpfunktion des RPE das extrazelluläre Ionenmillieu der Photorezeptoren. Ein auf diese Weise erzeugter osmotischer Unterdruck sorgt gleichfalls auch für eine Adhäsion der Netzhaut am RPE und ist ein wichtiger Bestandteil zur Verhinderung von Netzhautablösungen. Produktion und Sekretion verschiedener Wachstumsfaktoren reguliert das Milieu für die Aufrechterhaltung der funktionellen Einheit aus Photorezeptoren, RPE und Choriokapillaris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [No authors listed] (1991) Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the macular photocoagulation study. Macular Photocoagulation Study Group. Archives of ophthalmology 109: 1242–1257

    Google Scholar 

  2. Ahir A, Guo L, Hussain AA, Marshall J (2002) Expression of metalloproteinases from human retinal pigment epithelial cells and their effects on the hydraulic conductivity of Bruch’s membrane. Investigative ophthalmology & visual science 43: 458–465

    Google Scholar 

  3. Aisenbrey S, Zhang M, Bacher D, Yee J, Brunken WJ, Hunter DD (2006) Retinal pigment epithelial cells synthesize laminins, including laminin 5, and adhere to them through alpha3- and alpha6-containing integrins. Investigative ophthalmology & visual science 47: 5537–5544

    Google Scholar 

  4. Archer DB, Gardiner TA (1981a) Electron microscopic features of experimental choroidal neovascularization. American journal of ophthalmology 91: 433–457

    CAS  Google Scholar 

  5. Archer DB, Gardiner TA (1981b) Morphologic fluorescein angiographic, and light microscopic features of experimental choroidal neovascularization. American journal of ophthalmology 91: 297–311

    CAS  Google Scholar 

  6. Arroyo JG, Yang L, Bula D. Chen DF (2005) Photoreceptor apoptosis in human retinal detachment. American journal of ophthalmology 139: 605–610

    PubMed  Google Scholar 

  7. Bairati A, Jr, Orzalesi N (1963) The Ultrastructure of the Pigment Epithelium and of the Photoreceptor-Pigment Epithelium Junction in the Human Retina. Journal of ultrastructure research 41: 484–496

    PubMed  Google Scholar 

  8. Barondes M, Pauleikhoff D, Chisholm IC, Minassian D, Bird AC (1990) Bilaterality of drusen. The British journal of ophthalmology 74: 180–182

    PubMed  CAS  Google Scholar 

  9. Barondes MJ, Pagliarini S, Chisholm IH, Hamilton AM, Bird AC (1992) Controlled trial of laser photocoagulation of pigment epithelial detachments in the elderly: 4 year review. The British journal of ophthalmology 76: 5–7

    PubMed  CAS  Google Scholar 

  10. Bird AC (1991) Doyne Lecture. Pathogenesis of retinal pigment epithelial detachment in the elderly; the relevance of Bruch’s membrane change. Eye (London, England) 5 (Pt 1): 1–12

    Google Scholar 

  11. Bird AC (1993) Choroidal neovascularisation in age-related macular disease. The British journal of ophthalmology 77: 614–615

    PubMed  CAS  Google Scholar 

  12. Bird AC, Marshall J (1986) Retinal pigment epithelial detachments in the elderly. Transactions of the ophthalmological societies of the United Kingdom 105 (Pt 6): 674–682

    PubMed  Google Scholar 

  13. Bok D (1985) Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture. Investigative ophthalmology & visual science 26: 1659–1694

    CAS  Google Scholar 

  14. Bressler NM, Bressler SB, Fine SL (1988a) Age-related macular degeneration. Survey of ophthalmology 32: 375–413

    CAS  Google Scholar 

  15. Bressler NM, Bressler SB, Gragoudas ES (1987) Clinical characteristics of choroidal neovascular membranes. Archives of ophthalmology 105. 209–213

    PubMed  CAS  Google Scholar 

  16. Bressler NM, Bressler SB, Seddon JM; Gragoudas ES Jacobson LP (1988b) Drusen characteristics in patients with exudative versus non-exudative age-related macular degeneration. Retina (Philadelphia, Pa) 8: 109–114

    CAS  Google Scholar 

  17. Burns RP, Feeney-Burns L (1980) Clinico-morphologic correlations of drusen of Bruch’s membrane. Transactions of the American Ophthalmological Society 78: 206–225

    PubMed  CAS  Google Scholar 

  18. Campochiaro PA, Jerdon JA, Glaser BM (1986) The extracellular matrix of human retinal pigment epithelial cells in vivo and its synthesis in vitro. Investigative ophthalmology & visual science 27: 1615–1621

    CAS  Google Scholar 

  19. Capon MR, Marshall J, Krafft JI, Alexander RA, Hiscott PS, Bird AC (1989) Sorsby’s fundus dystrophy. A light and electron microscopic study. Ophthalmology 96: 1769–1777

    PubMed  CAS  Google Scholar 

  20. Casswell AG, Kohen D, Bird AC (1985) Retinal pigment epithelial detachments in the elderly: classification and outcome. The British journal of ophthalmology 69: 397–403

    PubMed  CAS  Google Scholar 

  21. Chang CJ, Lai WW, Edward DP, Tso MO (1995) Apoptotic photoreceptor cell death after traumatic retinal detachment in humans. Archives of ophthalmology 113: 880–886

    PubMed  CAS  Google Scholar 

  22. Chen JC, Fitzke FW, Pauleikhoff D, Bird AC (1992) Functional loss in age-related Bruch’s membrane change with choroidal perfusion defect. Investigative ophthalmology & visual science 33: 334–340

    CAS  Google Scholar 

  23. Chuang EL, Bird AC (1988) The pathogenesis of tears of the retinal pigment epithelium. American journal of ophthalmology 105: 285–290

    PubMed  CAS  Google Scholar 

  24. Coffey AJ, Brownstein S (1986) The prevalence of macular drusen in postmortem eyes. American journal of ophthalmology 102: 164–171

    PubMed  CAS  Google Scholar 

  25. Curcio CA, Johnson M, Huang JD, Rudolf M (2009) Aging, agerelated macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Progress in retinal and eye research 28: 393–422

    PubMed  CAS  Google Scholar 

  26. Curcio CA, Millican CL (1999) Basal linear deposit and large drusen are specific for early age-related maculopathy. Archives of ophthalmology 117: 329–339

    PubMed  CAS  Google Scholar 

  27. Curcio CA, Millican CL, Bailey T, Kruth HS (2001) Accumulation of cholesterol with age in human Bruch’s membrane. Investigative ophthalmology & visual science 42: 265–274

    CAS  Google Scholar 

  28. Curcio CA, Presley JB, Malek G, Medeiros NE, Avery DV, Kruth HS (2005) Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Experimental eye research 81: 731–741

    PubMed  CAS  Google Scholar 

  29. Dastgheib K, Green WR (1994) Granulomatous reaction to Bruch’s membrane in age-related macular degeneration. Archives of ophthalmology 112: 813–818

    PubMed  CAS  Google Scholar 

  30. Davis WL, Jones RG, Hagler HK (1981) An electron microscopic histochemical and analytical X-ray microprobe study of calcification in Bruch’s membrane from human eyes. J Histochem Cytochem 29: 601–608

    PubMed  CAS  Google Scholar 

  31. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Investigative ophthalmology & visual science 36: 718–729

    CAS  Google Scholar 

  32. Dithmar S, Sharara NA, Curcio CA, Le NA, Zhang Y, Brown S, Grossniklaus HE (2001) Murine high-fat diet and laser photochemical model of basal deposits in Bruch membrane. Archives of ophthalmology 119: 1643–1649

    PubMed  CAS  Google Scholar 

  33. Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ (1989) Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Investigative ophthalmology & visual science 30: 1691–1699

    CAS  Google Scholar 

  34. Farkas TG, Sylvester V, Archer D (1971) The ultrastructure of drusen. American journal of ophthalmology 71: 1196–1205

    PubMed  CAS  Google Scholar 

  35. Feeney-Burns L, Ellersieck MR (1985) Age-related changes in the ultrastructure of Bruch’s membrane. American journal of ophthalmology 100: 686–697

    PubMed  CAS  Google Scholar 

  36. Fisher RF (1982) The water permeability of basement membrane under increasing pressure: evidence for a new theory of permeability. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character 216: 475–496

    CAS  Google Scholar 

  37. Fisher RF (1987) The influence of age on some ocular basement membranes. Eye (London, England) 1 (Pt 2): 184–189

    Google Scholar 

  38. Foulds WS (1976) Doyne Memorial Lecture 1976. Clinical significance of trans-scleral fluid transfer. Transactions of the ophthalmological societies of the United Kingdom 96: 290–308

    PubMed  CAS  Google Scholar 

  39. Gamulescu MA, Renner AB, Helbig H (2009) [Clinical manifestations of functional disturbances of the retinal pigment epithelium]. Ophthalmologe 106: 305–310

    PubMed  CAS  Google Scholar 

  40. Gass JD (1967) Pathogenesis of disciform detachment of the neuroepithelium. American journal of ophthalmology 63: Suppl:1–139

    PubMed  Google Scholar 

  41. Gass JD (1973) Drusen and disciform macular detachment and degeneration. Archives of ophthalmology 90: 206–217

    PubMed  CAS  Google Scholar 

  42. Gass JD (1984) Pathogenesis of tears of the retinal pigment epithelium. The British journal of ophthalmology 68: 513–519

    PubMed  CAS  Google Scholar 

  43. Green WR, Enger C (1993) Age-related macular degeneration histopathologic studies. The 1992 Lorenz E. Zimmerman Lecture. Ophthalmology 100: 1519–1535

    PubMed  CAS  Google Scholar 

  44. Green WR, Key SN, 3rd (1977) Senile macular degeneration: a histopathologic study. Transactions of the American Ophthalmological Society 75: 180–254

    PubMed  CAS  Google Scholar 

  45. Green WR, McDonnell PJ, Yeo JH (1985) Pathologic features of senile macular degeneration. Ophthalmology 92: 615–627

    PubMed  CAS  Google Scholar 

  46. Grossniklaus HE, Gass JD (1998) Clinicopathologic correlations of surgically excised type 1 and type 2 submacular choroidal neovascular membranes. American journal of ophthalmology 126: 59–69

    PubMed  CAS  Google Scholar 

  47. Grossniklaus HE, Green WR (1998) Histopathologic and ultrastructural findings of surgically excised choroidal neovascularization. Submacular Surgery Trials Research Group. Archives of ophthalmology 116: 745–749

    PubMed  CAS  Google Scholar 

  48. Grossniklaus HE, Hutchinson AK, Capone A, Jr, Woolfson J, Lambert HM (1994) Clinicopathologic features of surgically excised choroidal neovascular membranes. Ophthalmology 101: 1099–1111

    PubMed  CAS  Google Scholar 

  49. Guo L, Hussain AA, Limb GA, Marshall J (1999) Age-dependent variation in metalloproteinase activity of isolated human Bruch’s membrane and choroid. Investigative ophthalmology & visual science 40: 2676–2682

    CAS  Google Scholar 

  50. Guymer R, Luthert P, Bird A (1999) Changes in Bruch’s membrane and related structures with age. Progress in retinal and eye research 18: 59–90

    PubMed  CAS  Google Scholar 

  51. Haimovici R, Gantz DL, Rumelt S, Freddo TF, Small DM (2001) The lipid composition of drusen, Bruch’s membrane, and sclera by hot stage polarizing light microscopy. Investigative ophthalmology & visual science 42: 1592–1599

    CAS  Google Scholar 

  52. Hamlin CR, Kohn RR (1971) Evidence for progressive, age-related structural changes in post–mature human collagen. Biochimica et biophysica acta 236: 458–467

    PubMed  CAS  Google Scholar 

  53. Handa JT, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty GA, te Koppele JM, Miyata T, Hjelmeland LM (1999) Increase in the advanced glycation end product pentosidine in Bruch’s membrane with age. Investigative ophthalmology & visual science 40: 775–779

    CAS  Google Scholar 

  54. Hao W, Wenzel A, Obin MS, Chen CK, Brill E, Krasnoperova NV, Eversole-Cire P, Kleyner Y, Taylor A, Simon MI, et al: (2002) Evidence for two apoptotic pathways in light-induced retinal degeneration. Nature genetics 32: 254–260

    PubMed  CAS  Google Scholar 

  55. Hermans P, Lommatzsch A, Bomfeld N, Pauleikhoff D (2003) [Angiographic-histological correlation of late exudative agerelated macular degeneration]. Ophthalmologe 100: 378–383

    PubMed  CAS  Google Scholar 

  56. Ho TC, Del Priore LV (1997) Reattachment of cultured human retinal pigment epithelium to extracellular matrix and human Bruch’s membrane. Investigative ophthalmology & visual science 38: 1110–1118

    CAS  Google Scholar 

  57. Hogan MJ (1965) Macular Diseases: Pathogenesis. Electron Microscopy of Bruch’s Membrane. Transactions – American Academy of Ophthalmology and Otolaryngology 69: 683–690

    PubMed  CAS  Google Scholar 

  58. Holz FG, Sheraidah G, Pauleikhoff D, Bird AC (1994) Analysis of lipid deposits extracted from human macular and peripheral Bruch’s membrane. Archives of ophthalmology 112: 402–406

    PubMed  CAS  Google Scholar 

  59. Howard EW, Benton R, Ahern-Moore J, Tomasek JJ (1996) Cellular contraction of collagen lattices is inhibited by nonenzymatic glycation. Experimental cell research 228: 132–137

    PubMed  CAS  Google Scholar 

  60. Huang JD, Presley JB, Chimento MF, Curcio CA, Johnson M (2007) Age-related changes in human macular Bruch’s membrane as seen by quick-freeze/deep-etch. Experimental eye research 85. 202–218

    PubMed  CAS  Google Scholar 

  61. Hussain AA, Rowe L, Marshall J (2002) Age-related alterations in the diffusional transport of amino acids across the human Bruch’s-choroid complex. Journal of the Optical Society of America 19: 166–172

    PubMed  CAS  Google Scholar 

  62. Hyman L, Schachat AP, He Q, Leske MC (2000) Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group. Archives of ophthalmology 118: 351–358

    PubMed  CAS  Google Scholar 

  63. Ishibashi T, Murata T, Hangai M, Nagai R, Horiuchi S, Lopez PF, Hinton DR, Ryan SJ (1998) Advanced glycation end products in age-related macular degeneration. Archives of ophthalmology 116: 1629–1632

    PubMed  CAS  Google Scholar 

  64. Ishibashi T, Patterson R, Ohnishi Y, Inomata H, Ryan SJ (1986a) Formation of drusen in the human eye. American journal of ophthalmology 101: 342–353

    CAS  Google Scholar 

  65. Ishibashi T, Sorgente N, Patterson R, Ryan SJ (1986b) Pathogenesis of drusen in the primate. Investigative ophthalmology & visual science 27: 184–193

    CAS  Google Scholar 

  66. Johnson M, Dabholkar A, Huang JD, Presley JB, Chimento MF, Curcio CA (2007) Comparison of morphology of human macular and peripheral Bruch’s membrane in older eyes. Current eye research 32: 791–799

    PubMed  Google Scholar 

  67. Kamei M, Hollyfield JG (1999) TIMP-3 in Bruch’s membrane: changes during aging and in age-related macular degeneration. Investigative ophthalmology & visual science 40: 2367–2375

    CAS  Google Scholar 

  68. Karwatowski WS, Jeffries TE, Duance VC, Albon J, Bailey AJ, Easty DL (1995) Preparation of Bruch’s membrane and analysis of the age-related changes in the structural collagens. The British journal of ophthalmology 79: 944–952

    PubMed  CAS  Google Scholar 

  69. Killingsworth MC, Sarks JP, Sarks SH (1990) Macrophages related to Bruch’s membrane in age-related macular degeneration. Eye (London, England) 4 (Pt 4): 613–621

    Google Scholar 

  70. Kliffen M, Mooy CM, Luider TM, de Jong PT (1994) Analysis of carbohydrate structures in basal laminar deposit in aging human maculae. Investigative ophthalmology & visual science 35: 2901–2905

    CAS  Google Scholar 

  71. Kliffen M, Mooy CM, Luider TM, Huijmans JG, Kerkvliet S, de Jong PT (1996) Identification of glycosaminoglycans in agerelated macular deposits. Archives of ophthalmology 114: 1009–1014

    PubMed  CAS  Google Scholar 

  72. Krishnamurti U, Rondeau E, Sraer JD, Michael AF, Tsilibary EC (1997) Alterations in human glomerular epithelial cells interacting with nonenzymatically glycosylated matrix. The Journal of biological chemistry 272: 27966–27970

    PubMed  CAS  Google Scholar 

  73. Kunze A, Abari E, Semkova I, Paulsson M, Hartmann U (2009) Deposition of nidogens and other basement membrane proteins in the young and aging mouse retina. Ophthalmic research 43: 108–112

    PubMed  Google Scholar 

  74. Lafaut BA, Aisenbrey S, Van den Broecke C, Krott R, Jonescu-Cuypers CP, Reynders S, Bartz-Schmidt KU (2001) Clinicopathological correlation of retinal pigment epithelial tears in exudative age related macular degeneration: pretear, tear, and scarred tear. The British journal of ophthalmology 85: 454–460

    PubMed  CAS  Google Scholar 

  75. Loffler KU, Lee WR (1986) Basal linear deposit in the human macula Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 224: 493–501

    CAS  Google Scholar 

  76. Lommatzsch A, Heimes B, Gutfleisch M, Spital G, Zeimer M, Pauleikhoff D (2009) Serous pigment epithelial detachment in age-related macular degeneration: comparison of different treatments. Eye (London, England) 23: 2163–2168

    CAS  Google Scholar 

  77. Lommatzsch A, Hermans P, Muller KD, Bornfeld N, Bird AC, Pauleikhoff D (2008) Are low inflammatory reactions involved in exudative age-related macular degeneration? Morphological and immunhistochemical analysis of AMD associated with basal deposits. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 246: 803–810

    PubMed  CAS  Google Scholar 

  78. Marshall GE, Konstas AG, Reid GG, Edwards JG, Lee WR (1994) Collagens in the aged human macula. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 232: 133–140

    PubMed  CAS  Google Scholar 

  79. Marshall J (1987) The ageing retina: physiology or pathology. Eye (London, England) 1 (Pt 2): 282–295

    Google Scholar 

  80. Marshall J, Hussain AA, Starita C, Moore DJ, Patmore AL (1998) Aging and Bruch’s Membrane: In: Marmor MF, Wolfensberger TJ (eds) The Retinal Pigment Epithelium: Function and Disease. Oxford University Press, pp. 669–692

    Google Scholar 

  81. Martinez GS, Campbell AJ, Reinken J, Allan BC (1982) Prevalence of ocular disease in a population study of subjects 65 years old and older. American journal of ophthalmology 94: 181–189

    PubMed  CAS  Google Scholar 

  82. Miller H, Miller B, Ryan SJ (1986a) Newly-formed subretinal vessels. Fine structure and fluorescein leakage. Investigative ophthalmology & visual science 27. 204–213

    CAS  Google Scholar 

  83. Miller H, Miller B, Ryan SJ (1986b) The role of retinal pigment epithelium in the involution of subretinal neovascularization. Investigative ophthalmology & visual science 27: 1644–1652

    CAS  Google Scholar 

  84. Moore DJ, Hussain AA, Marshall J (1995) Age-related variation in the hydraulic conductivity of Bruch’s membrane. Investigative ophthalmology & visual science 36: 1290–1297

    CAS  Google Scholar 

  85. Mullins RF, Aptsiauri N, Hageman, GS (2001) Structure and composition of drusen associated with glomerulonephritis: implications for the role of complement activation in drusen biogenesis. Eye (London, England) 15: 390–395

    CAS  Google Scholar 

  86. Mullins RF, Johnson LV, Anderson DH, Hageman GS (1997) Characterization of drusen-associated glycoconjugates. Ophthalmology 104: 288–294

    PubMed  CAS  Google Scholar 

  87. Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. Faseb J 14: 835–846

    PubMed  CAS  Google Scholar 

  88. Nakaizumi Y, Hogan MJ, Feeney L (1964) The Ultrastructure of Bruch’s Membrane. 3. the Macular Area of the Human Eye. Archives of ophthalmology 72: 395–400

    PubMed  CAS  Google Scholar 

  89. Neuner B, Wellmann J, Dasch B, Behrens T, Claes B, Dietzel M, Pauleikhoff D, Hense HW (2007) Modeling smoking history: a comparison of different approaches in the MARS study on agerelated maculopathy. Annals of epidemiology 17: 615–621

    PubMed  Google Scholar 

  90. Okubo A, Rosa RH, Jr, Bunce CV, Alexander RA, Fan JT, Bird AC, Luthert PJ (1999) The relationships of age changes in retinal pigment epithelium and Bruch’s membrane. Investigative ophthalmology & visual science 40: 443–449

    CAS  Google Scholar 

  91. Pauleikhoff D, Chen J, Bird AC, Wessing A (1992a) [The Bruch membrane and choroid Angiography and functional characteristics in age-related changes]. Ophthalmologe 89: 39–44

    CAS  Google Scholar 

  92. Pauleikhoff D, Harper CA, Marshall J, Bird AC (1990) Aging changes in Bruch’s membrane A histochemical and morphologic study. Ophthalmology 97: 171–178

    PubMed  CAS  Google Scholar 

  93. Pauleikhoff D, Koch JM (1995) Prevalence of age-related macular degeneration. Current opinion in ophthalmology 6: 51–56

    PubMed  CAS  Google Scholar 

  94. Pauleikhoff D, Loffert D, Spital G, Radermacher M, Dohrmann J, Lommatzsch A, Bird AC (2002) Pigment epithelial detachment in the elderly. Clinical differentiation, natural course and pathogenetic implications. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 240: 533–538

    PubMed  CAS  Google Scholar 

  95. Pauleikhoff D, Sheraidah G, Marshall J, Bird AC, Wessing A (1994) [Biochemical and histochemical analysis of age related lipid deposits in Bruch’s membrane]. Ophthalmologe 91: 730–734

    PubMed  CAS  Google Scholar 

  96. Pauleikhoff D, Wojteki S, Muller D, Bornfeld N, Heiligenhaus A (2000) [Adhesive properties of basal membranes of Bruch’s membrane. Immunohistochemical studies of age-dependent changes in adhesive molecules and lipid deposits]. Ophthalmologe 97: 243–250

    PubMed  CAS  Google Scholar 

  97. Pauleikhoff D, Zuels S, Sheraidah GS, Marshall J, Wessing A, Bird AC (1992b) Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology 99: 1548–1553

    CAS  Google Scholar 

  98. Penfold PL, Killingsworth MC, Sarks SH (1985) Senile macular degeneration: the involvement of immunocompetent cells. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 223: 69–76

    PubMed  CAS  Google Scholar 

  99. Penfold PL, Liew SC, Madigan MC, Provis JM (1997) Modulation of major histocompatibility complex class II expression in retinas with age-related macular degeneration. Investigative ophthalmology & visual science 38: 2125–2133

    CAS  Google Scholar 

  100. Penfold PL, Madigan MC, Gillies MC, Provis JM (2001) Immunological and aetiological aspects of macular degeneration. Progress in retinal and eye research 20: 385–414

    PubMed  CAS  Google Scholar 

  101. Ramrattan RS, Van Der Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, de Jong PT (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Investigative ophthalmology & visual science 35: 2857–2864

    CAS  Google Scholar 

  102. Rittie L, Berton A, Monboisse JC, Hornebeck W, Gillery P (1999) Decreased contraction of glycated collagen lattices coincides with impaired matrix metalloproteinase production. Biochemical and biophysical research communications 264: 488–492

    PubMed  CAS  Google Scholar 

  103. Rizzolo LJ (1991) Basement membrane stimulates the polarized distribution of integrins but not the Na,K-ATPase in the retinal pigment epithelium. Cell regulation 2: 939–949

    PubMed  CAS  Google Scholar 

  104. Sarks JP, Sarks SH, Killingsworth MC (1988) Evolution of geographic atrophy of the retinal pigment epithelium. Eye (London, England) 2 (Pt 5): 552–577

    Google Scholar 

  105. Sarks SH (1976) Ageing and degeneration in the macular region: a clinico-pathological study. The British journal of ophthalmology 60: 324–341

    PubMed  CAS  Google Scholar 

  106. Sarks SH, Van Driel D, Maxwell L, Killingsworth M (1980) Softening of drusen and subretinal neovascularization. Transactions of the ophthalmological societies of the United Kingdom 100: 414–422

    PubMed  CAS  Google Scholar 

  107. Sheraidah G, Steinmetz R, Maguire J, Pauleikhoff D, Marshall J, Bird AC (1993) Correlation between lipids extracted from Bruch’s membrane and age. Ophthalmology 100: 47–51

    PubMed  CAS  Google Scholar 

  108. Soubrane G, Coscas G, Francais C, Koenig F (1990) Occult subretinal new vessels in age-related macular degeneration. Natural History and early laser treatment. Ophthalmology 97: 649–657

    PubMed  CAS  Google Scholar 

  109. Spaide RF, Ho-Spaide WC, Browne RW, Armstrong D (1999) Characterization of peroxidized lipids in Bruch’s membrane. Retina (Philadelphia, Pa) 19: 141–147

    CAS  Google Scholar 

  110. Spraul CW, Lang GE, Grossniklaus HE, Lang GK (1998) [Characteristics of drusen and changes in Bruch’s membrane in eyes with age-related macular degeneration. Histological study]. Ophthalmologe 95: 73–79

    PubMed  CAS  Google Scholar 

  111. Starita C, Hussain AA, Marshall J (1995) Decreasing hydraulic conductivity of Bruch’s membrane: relevance to photoreceptor survival and lipofuscinoses. American journal of medical genetics 57: 235–237

    PubMed  CAS  Google Scholar 

  112. Starita C, Hussain AA, Pagliarini S, Marshall J (1996) Hydrodynamics of ageing Bruch’s membrane: implications for macular disease. Experimental eye research 62: 565–572

    PubMed  CAS  Google Scholar 

  113. Starita C, Hussain AA, Patmore A, Marshall J (1997) Localization of the site of major resistance to fluid transport in Bruch’s membrane. Investigative ophthalmology & visual science 38: 762–767

    CAS  Google Scholar 

  114. Strauss O (2005) The retinal pigment epithelium in visual function. Physiological reviews 85: 845–881

    PubMed  CAS  Google Scholar 

  115. Strauss O (2009) [The role of retinal pigment epithelium in visual functions]. Ophthalmologe 106: 299–304

    PubMed  CAS  Google Scholar 

  116. Tian SF, Toda S, Higashino H, Matsumura S (1996) Glycation decreases the stability of the triple-helical strands of fibrous collagen against proteolytic degradation by pepsin in a specific temperature range. Journal of biochemistry 120: 1153–1162

    PubMed  CAS  Google Scholar 

  117. Tsuboi S (1987) Measurement of the volume flow and hydraulic conductivity across the isolated dog retinal pigment epithelium. Investigative ophthalmology & visual science 28: 1776–1782

    CAS  Google Scholar 

  118. Van Der Schaft TL, de Bruijn WC, Mooy CM, Ketelaars DA, de Jong PT (1991) Is basal laminar deposit unique for age-related macular degeneration? Archives of ophthalmology 109: 420–425

    PubMed  Google Scholar 

  119. Van Der Schaft TL, Mooy CM, de Bruijn WC, Bosman FT, de Jong PT (1994) Immunohistochemical light and electron microscopy of basal laminar deposit. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 232: 40–46

    PubMed  Google Scholar 

  120. Vater CA, Harris ED, Jr, Siegel RC (1979) Native cross-links in collagen fibrils induce resistance to human synovial collagenase. The Biochemical journal 181: 639–645

    PubMed  CAS  Google Scholar 

  121. Wang L, Li CM, Rudolf M, Belyaeva OV, Chung BH, Messinger JD, Kedishvili NY, Curcio CA (2009) Lipoprotein particles of intraocular origin in human Bruch membrane: an unusual lipid profile. Investigative ophthalmology & visual science 50: 870–877

    Google Scholar 

  122. Wasmuth S, Lueck K, Baehler H, Lommatzsch A, Pauleikhoff D (2009) Increased vitronectin production by complementstimulated human retinal pigment epithelial cells. Investigative ophthalmology & visual science 50: 5304–5309

    Google Scholar 

  123. Wimmers S, Karl MO, Strauss O (2007) Ion channels in the RPE. Progress in retinal and eye research 26: 263–301

    PubMed  CAS  Google Scholar 

  124. Young RW (1987) Pathophysiology of age-related macular degeneration. Survey of ophthalmology 31: 291–306

    PubMed  CAS  Google Scholar 

  125. Zacks DN, Zheng QD, Han Y, Bakhru R, Miller JW (2004) FAS-mediated apoptosis and its relation to intrinsic pathway activation in an experimental model of retinal detachment. Investigative ophthalmology & visual science 45: 4563–4569

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lommatzsch, A., Wasmuth, S., Pauleikhoff, D., Holz, F.G., Bird, A.C. (2011). Histopathologie. In: Altersabhängige Makuladegeneration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20870-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20870-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20869-0

  • Online ISBN: 978-3-642-20870-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics