Skip to main content

Biomechanik des Kniegelenks

  • Chapter
  • First Online:
AE-Manual der Endoprothetik

Zusammenfassung

Um die Zeiträume zu minimieren, die nach einem endoprothetischen Gelenkersatz zur Regeneration des Patienten nötig sind, und eine möglichst schnelle und weitestgehende Wiederherstellung der Funktion während der Rehabilitation zu ermöglichen, ist ein gewisses Verständnis der mechanischen Bedingungen nötig. Wissen um die mechanischen Bedingungen ist insbesondere deshalb von Bedeutung, weil zum einen die Endoprothese die makroskopischen Bedingungen für das Gelenk grundlegend ändert. Zum anderen bestimmt das chirurgische Vorgehen – beim Kniegelenk besonders die Balance und Aktivität der Weichteile – die mechanischen Rahmenbedingungen, unter denen die knöcherne Integration des Implantats stattfindet. Somit sind die biomechanischen Bedingungen nicht nur für die Funktion, sondern auch für die Dauerhaftigkeit des Gelenkersatzes in dem sich mit dem Alter ändernden biologischen Umfeld entscheidend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Andriacchi TP, Alexander EJ, Toney MK, Dyrby C, Sum J (1998) A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J Biomech Eng 120:743–749

    Article  CAS  PubMed  Google Scholar 

  • Badhe N, Dewnany G, Livesley PJ (2001) Should the patella be replaced in total knee replacement? Int Orthop 25:97–99

    Article  CAS  PubMed  Google Scholar 

  • Baliunas AJ, Hurwitz DE, Ryals AB, Karrar A, Case JP, Block JA, Andriacchi TP (2002) Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthritis Cartilage 10:573–579

    Article  CAS  PubMed  Google Scholar 

  • Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 26:969–990

    Article  CAS  PubMed  Google Scholar 

  • Bergmann G, Graichen F, Rohlmann A, Westerhoff P, Bender A, Gabel U, Heinlein B (2007) Die Belastung orthopädischer Implantate. Messungen und praktische Anwendungen. Orthopäde 36:195–204

    Article  CAS  PubMed  Google Scholar 

  • Burnett RS, Haydon CM, Rorabeck CH, Bourne RB (2004) Patella resurfacing versus nonresurfacing in total knee arthroplasty: results of a randomized controlled clinical trial at a minimum of 10 years’ follow-up. Clin Orthop Relat Res, S. 12–25

    Google Scholar 

  • Carlson CE, Mann RW, Harris WH (1974) A radio telemetry device for monitoring cartilage surface pressures in the human hip. IEEE Trans Biomed Eng 21:257–264

    Article  CAS  PubMed  Google Scholar 

  • Chao EY, Rim K (1973) Application of optimization principles in determining the applied moments in human leg joints during gait. J Biomech 6:497–510

    Article  CAS  PubMed  Google Scholar 

  • Collins JJ, O’Connor JJ (1991) Muscle-ligament interactions at the knee during walking. Proc Inst Mech Eng H 205:11–18

    CAS  PubMed  Google Scholar 

  • Coventry MB (1985) Upper tibial osteotomy for osteoarthritis. J Bone Joint Surg Am 67:1136–1140

    CAS  Google Scholar 

  • Cristofolini L, Viceconti M, Toni A, Giunti A (1995) Influence of thigh muscles on the axial strains in a proximal femur during early stance in gait. J Biomech 28:617–624

    Article  CAS  PubMed  Google Scholar 

  • Crowninshield RD (1978) Use of optimization techniques to predict muscle forces. J Biomech Eng 100:88–92

    Google Scholar 

  • D’Lima DD, Patil S, Steklov N, Slamin JE, Colwell CW Jr (2005) The Chitranjan Ranawat Award: in vivo knee forces after total knee arthroplasty. Clin Orthop Relat Res 440:45–49

    Article  PubMed  Google Scholar 

  • D’Lima DD, Patil S, Steklov N, Slamin JE, Colwell JCW (2006) Tibial forces measured in vivo after total knee arthroplasty. J Arthroplasty 21:255–262

    Article  PubMed  Google Scholar 

  • Davy DT, Audu ML (1987) A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J Biomech 20:187–201

    Article  CAS  PubMed  Google Scholar 

  • Davy DT, Kotzar GM, Brown RH, Goldberg VM, Heiple KG, Berilla J, Burstein AH (1988) Telemetric force measurement across the hip after total hip arthroplasty. J Bone Joint Surg Am 70-A:45–50

    CAS  Google Scholar 

  • Dennis DA (2006) Trends in total knee arthroplasty. Orthopedics 29:S13–S16

    Google Scholar 

  • Duda GN (1996) Influence of muscle forces on the internal loads in the femur during gait. Dissertation TU Hamburg-Harburg

    Google Scholar 

  • Ehrig RM, Taylor WR, Duda GN, Heller MO (2007) A survey of formal methods for determining functional joint axes. J Biomech 40:2150–2157

    Article  PubMed  Google Scholar 

  • von Eisenhart-Rothe R, Vogl T, Englmeier KH, Dennis DA (2007) Knieprothesenkinematik. Orthopäde 36:620–627

    Article  CAS  PubMed  Google Scholar 

  • English TA, Kilvington M (1979) In vivo records of hip loads using a femoral implant with telemtric output (A preliminary report). J Biomed Eng 1:111–115

    Article  CAS  PubMed  Google Scholar 

  • Felson DT (1995) Weight and osteoarthritis. J Rheumatol Suppl 43:7–9

    CAS  PubMed  Google Scholar 

  • Figgie HE 3rd, Goldberg VM, Figgie MP, Inglis AE, Kelly M, Sobel M (1989) The effect of alignment of the implant on fractures of the patella after condylar total knee arthroplasty. J Bone Joint Surg Am 71:1031–1039

    Google Scholar 

  • Figgie HE 3rd, Goldberg VM, Heiple KG, Moller HS 3rd, Gordon NH (1986) The influence of tibial-patellofemoral location on function of the knee in patients with the posterior stabilized condylar knee prosthesis. J Bone Joint Surg Am 68:1035–1040

    Google Scholar 

  • Fuchs S, Kullmer G, Richard HA (1997) Darstellung der Konstruktion eines FE-Modells am Beispiel des Kniegelenkes. Biomed Tech (Berl) 42:347–351

    Article  CAS  Google Scholar 

  • Gamada K, Jayasekera N, Kashif F, Fennema P, Schmotzer H, Banks SA (2008) Does ligament balancing technique affect kinematics in rotating platform, PCL retaining knee arthroplasties? A prospective randomized study. Knee Surg Sports Traumatol Arthrosc 16:160–166

    Article  CAS  PubMed  Google Scholar 

  • Ghista DN, Toridis TG, Srinivasan TM (1976) Human gait analysis: determination of instantaneous joint reaction forces, muscle forces and the stress distribution in bone segments part II. Biomed Tech 21:66–74

    Article  CAS  Google Scholar 

  • Graichen F, Arnold R, Rohlmann A, Bergmann G (2007) Implantable 9-channel telemetry system for in vivo load measurements with orthopedic implants. IEEE Trans. Biomed Eng 54:253–261

    Article  Google Scholar 

  • Grelsamer RP (2002) Patella baja after total knee arthroplasty: is it really patella baja? J Arthroplasty 17:66–69

    Article  PubMed  Google Scholar 

  • ten Ham AM, Wymenga AB, Jacobs WC (2005) The use of the knee joint-line balancer to control patella position in revision total knee arthroplasty. Knee 12:89–92

    Article  PubMed  Google Scholar 

  • Han HS, Kang SB, Yoon KS (2007) High incidence of loosening of the femoral component in legacy posterior stabilised-flex total knee replacement. J Bone Joint Surg Br 89-B:1457–1461

    Article  CAS  Google Scholar 

  • Heinlein B, Graichen F, Bender A, Rohlmann A, Bergmann G (2007) Design, calibration and pre-clinical testing of an instrumented tibial tray. J Biomech 40:S4–S10

    Article  Google Scholar 

  • Heller MO, Bergmann G, Deuretzbacher G, Dürselen L, Pohl M, Claes L, Haas NP, Duda GN (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34:883–893

    Article  CAS  PubMed  Google Scholar 

  • Heller MO, König C, Graichen H, Hinterwimmer S, Ehrig RM, Duda GN, Taylor WR (2007) A new model to predict in vivo human knee kinematics under physiological-like muscle activation. J Biomech 40:S45–S53

    Article  Google Scholar 

  • Heller MO, Matziolis G, König C et al. (2007) Muskuloskelettale Biomechanik des Kniegelenkes. Grundlagen für die präoperative Planung von Umstellung und Gelenkersatz. Orthopäde 36:628–634

    Article  CAS  PubMed  Google Scholar 

  • Heller MO, Taylor WR, Perka C, Duda GN (2003) The influence of alignment on the musculo-skeletal loading conditions at the knee. Langenbecks Arch Surg 388:291–297

    Article  PubMed  Google Scholar 

  • Holden JP, Grood ES, Korvick DL, Cummings JF, Butler DL, Bylski-Austrow DI (1994) In vivo forces in the anterior cruciate ligament: direct measurements during walking and trotting in a quadruped. J Biomech 27:517–526

    Article  CAS  PubMed  Google Scholar 

  • Hsu HC, Luo ZP, Rand JA, An KN (1996) Influence of patellar thickness on patellar tracking and patellofemoral contact characteristics after total knee arthroplasty. J Arthroplasty 11:69–80

    Article  CAS  PubMed  Google Scholar 

  • Kellis E (2001) Tibiofemoral joint forces during maximal isokinetic eccentric and concentric efforts of the knee flexors. Clin Biomech 16:229–236

    Article  CAS  Google Scholar 

  • Koch JC (1917) The law of bone architecture. Am J Anat 21:177–298

    Article  Google Scholar 

  • Komistek RD, Kane TR, Mahfouz M, Ochoa JA, Dennis DA (2005) Knee mechanics: a review of past and present techniques to determine in vivo loads. J Biomech 38:215–228

    Article  PubMed  Google Scholar 

  • Kuster MS, Stachowiak GW (2002) Factors affecting polyethylene wear in total knee arthroplasty. Orthopedics 25:S235–S242

    Google Scholar 

  • Leutloff D, Tobian F, Perka C (2001) High tibial osteotomy for valgus and varus deformities of the knee. Int Orthop 25:93–96

    Article  CAS  PubMed  Google Scholar 

  • Mann RW, Hodge WA (1990) In vivo pressures on acetabilar cartilage following endoprosthesis surgery, during recovery and rehabilitation, and in the activities of daily living. In: Bergmann G, Graichen F, Rohlmann A (Hrsg) Implantable telemetry in orthopaedics. Freie Universität Berlin, S. 181–204

    Google Scholar 

  • Morrey BF (1989) Upper tibial osteotomy for secondary osteoarthritis of the knee. J Bone Joint Surg Br 71:554–559

    CAS  Google Scholar 

  • Murray K, Erdman A, Branch T, Comfort T (1991) A biomechanical study of patella alta. ASME Biomech Symp 120:137

    Google Scholar 

  • Nagura T, Dyrby CO, Alexander EJ, Andriacchi TP (2002) Mechanical loads at the knee joint during deep flexion. J Orthop Res 20:881–886

    Article  PubMed  Google Scholar 

  • Oishi CS, Kaufman KR, Irby SE, Colwell CW Jr (1996) Effects of patellar thickness on compression and shear forces in total knee arthroplasty. Clin Orthop Relat Res 331:283–290

    Article  PubMed  Google Scholar 

  • Papannagari R, Gill TJ, DeFrate LE, Moses JM, Petruska AJ, Li G (2006) In vivo kinematics of the knee after anterior cruciate ligament reconstruction: a clinical and functional evaluation. Am J Sports Med 34:2006–2012

    Article  PubMed  Google Scholar 

  • Pauwels F (1951) Über die Bedeutung der Bauprinzipien des Stütz- und Bewegungsapparates für die Beanspruchung des Röhrenknochens. Acta Anat 12:207–227

    Article  CAS  PubMed  Google Scholar 

  • Pauwels F (1973) Atlas zur Biomechanik der gesunden und kranken Hüfte. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Pierrynowski MR (1982) A physiological model for the solution of individual muscle forces during normal human walking. Simon Fraser University, Vancouver

    Google Scholar 

  • Raftopoulos DD, Qassem W (1987) Three-dimensional curved beam stress analysis of the human femur. J Biomed Eng 9:356–366

    Article  CAS  PubMed  Google Scholar 

  • Ritter MA, Montgomery TJ, Zhou H, Keating ME, Faris PM, Meding JB (1999) The clinical significance of proximal tibial resection level in total knee arthroplasty. Clin Orthop Relat Res 360:174–181

    Article  PubMed  Google Scholar 

  • Rohlmann A, Mössner U, Bergmann G, Kolbel R (1983) Finite-element analysis and experimental investigation in a femur with hip endoprosthesis. J Biomech 16:727–742

    Article  CAS  PubMed  Google Scholar 

  • Rybicki EF, Simonen FA, Weis EB Jr (1972) On the mathematical analysis of stress in the human femur. J Biomech 5:203–215

    Article  CAS  PubMed  Google Scholar 

  • Rydell NW (1966a) Forces acting in the femoral head-prosthesis. Acta Orthop Scand 37 (Suppl 88):1–132

    Article  Google Scholar 

  • Rydell NW (1966b) Intravital measurements of forces acting on the hip joint. In: Evans FG (ed) Studies on the anatomy and function of bone and joints. Springer, Berlin, Heidelberg, New York, S. 52–68

    Google Scholar 

  • Seireg A, Arvikar RJ (1973) A mathematical model for evaluation of forces in lower extremeties of the musculo-skeletal system. J Biomech 6:313–326

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Leszko F, Komistek RD, Scuderi GR, Cates Jr HE, Liu F (2008) In vivo patellofemoral forces in high flexion total knee arthroplasty. J Biomech 41:642–648

    Article  PubMed  Google Scholar 

  • Siebold R, Dehler C, Ellert T (2008) Prospective randomized comparison of double-bundle versus single-bundle anterior cruciate ligament reconstruction. Arthroscopy 24:137–145

    Article  PubMed  Google Scholar 

  • Singerman R, Heiple KG, Davy DT, Goldberg VM (1995) Effect of tibial component position on patellar strain following total knee arthroplasty. J Arthroplasty 10:651–656

    Article  CAS  PubMed  Google Scholar 

  • Star MJ, Kaufman KR, Irby SE, Colwell CW Jr (1996) The effects of patellar thickness on patellofemoral forces after resurfacing. Clin Orthop Relat Res 322:279–284

    Article  PubMed  Google Scholar 

  • Taylor SJ, Perry JS, Meswania JM, Donaldson N, Walker PS, Cannon SR (1997) Telemetry of forces from proximal femoral replacements and relevance to fixation. J Biomech 30:225–234

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR, Heller MO, Bergmann G, Duda GN (2004) Tibio-femoral loading during human gait and stair-climbing. J Orthop Res 22:625–632

    Article  PubMed  Google Scholar 

  • Thunnissen JGM, Grootenboer HJ, de Jongh HJ, Koopman HFJM (1992) Three-dimensional muscle force prediction during gait. VIII ESB, Rome

    Google Scholar 

  • Waters TS, Bentley G (2003) Patellar resurfacing in total knee arthroplasty. A prospective, randomized study. J Bone Joint Surg Am 85-A:212–217

    Google Scholar 

  • Winter DA (1991) The biomechanics and motor control of human gait: Normal, elderly and pathological. University of Waterloo Press, Waterloo (Ontario/Canada)

    Google Scholar 

  • Wolff J (1892) Das Gesetz der Transformation der Knochen. A. Hirschwald, Berlin

    Google Scholar 

  • Wyss TF, Schuster AJ, Munger P, Pfluger D, Wehrli U (2006) Does total knee joint replacement with the soft tissue balancing surgical technique maintain the natural joint line? Arch Orthop Trauma Surg 126:480–486

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Duda .

Editor information

Editors and Affiliations

Copyright information

© 2011 Arbeitsgemeinschaft Endoprothetik

About this chapter

Cite this chapter

Duda, G.N., Heller, M.O., Pfitzner, T., Taylor, W.R., König, C., Bergmann, G. (2011). Biomechanik des Kniegelenks. In: Wirtz, D. (eds) AE-Manual der Endoprothetik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12889-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12889-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12888-2

  • Online ISBN: 978-3-642-12889-9

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics