Skip to main content

Leukemia is a disease of abnormal lymphopoiesis, myelopoiesis, or erythropoiesis resulting in multicentric and unexplained proliferation and/or accumulation of neoplastic cells. The basic problem with leukemia is one of departure from steady-state equilibrium in the production of marrow cells and the resultant infiltration and encroachment of excess leukemia cells upon other tissues, interfering with their normal function.

The risk of leukemia is associated with age, sex, geographic location, genetics and exposure to bracken fern, benzene and other chemicals, and ionizing radiation. The risk of developing leukemia is 1 in 5 for an identical twin if the other has leukemia, 1 in 6 for those treated with 32P for polycythemia vera, 1 in 8 for those with Bloom's syndrome, 1 in 60 for Hiroshima A-bomb survivors within 1,000 m of hypocenter, 1 in 95 for those with Down's syndrome, 1 in 720 for siblings of leukemia children, and 1 in 2,880 for children <15 years old [1, 2]. Leukemia is also a late complication of combined cancer radiotherapy and chemotherapy [3, 4].

No one has been identifiably injured by radiation while working within the first numerical standards set first by the NCRP and then the ICRP in 1934

(Lauriston Taylor)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lichtman MA, Klemperer MR (1978) Clinical oncology. University of Rochester, Rochester, NY and American Cancer Society, Atlanta, p 245

    Google Scholar 

  2. Lewis E. (1957) Leukemia and ionizing radiation. Science 43:965

    Article  Google Scholar 

  3. Rosner F, Grunwald HW, Zarrabi MH (1979) Acute leukemia as a complication of cytotoxic chemotherapy. Int J Radiat Oncol Biol Phys 5:1705–1707

    CAS  PubMed  Google Scholar 

  4. Boivin JF, Hutchison GB (1981) Leukemia and other cancers after radiotherapyand chemotherapy for Hodgkin's disease. JNCI 67:751–760

    CAS  PubMed  Google Scholar 

  5. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation (2007) Health risks from exposure to low levels of ionizing radiation: BEIR VII — phase 2. National Academies Press, Washington, DC

    Google Scholar 

  6. Sanders CL (2006) Hormesis as a confounding factor in epidemiological studies of radiation carcinogenesis. Korean Assoc Radiat Prot 31:69–89

    CAS  Google Scholar 

  7. Robinette C, Jablob S, Preston TL (1985) Studies of participants in nuclear tests. Final Report DOE/EV/0157. National Research Council, Washington, DC

    Google Scholar 

  8. Sever LE, Gilbert ES (1997) Epidemiologic evaluation of childhood leukemia and paternal exposure to ionizing radiation. Final Report, Centers for Disease Control and Prevention U50/ CCU012545–01. Battelle Memorial Institute, Seattle, WA

    Google Scholar 

  9. Doll R, Wakeford R (1997) Risk of childhood cancer from fetal irradiation. Br J Radiol 70: 130–139

    CAS  PubMed  Google Scholar 

  10. Jaumburg E, Bellecco R, Cnattingius S et al (2002) Intrauterine exposure to diagnostic X rays and risk of childhood leukemia subtypes. Radiat Res 156:718–723

    Article  Google Scholar 

  11. Shu XO, Potter JD, Linet MS et al (2002) Diagnostic X rays and ultrasound exposure and risk of childhood acute lymphoblastic leukemia by immunophenotype. Cancer Epidemiol Biomarkers Prev 11:177–185

    PubMed  Google Scholar 

  12. Rodvall Y, Hrubec Z, Pershagen G et al (1992) Childhood cancer among Swedish twins. Cancer Causes Control 3:527–532

    Article  CAS  PubMed  Google Scholar 

  13. Delongchamp RR, Mabushi K, Yasuhiko Y et al (1997) Cancer mortality among atomic bomb survivors exposed in uteroor as young children. Radiat Res 147:385–395

    Article  CAS  PubMed  Google Scholar 

  14. IARC (2000) Monograph on the evaluation of carcinogenic risks to humans, vol 75, Ionizing radiation part I: X and γ radiation and neutrons. Lyon, France

    Google Scholar 

  15. Folley JH, Borges W, Yamasaki TY (1952) Incidence of leukemia in survivors of the atom bomb in Hiroshima and Nagasaki, Japan. Am J Med 13:311–321

    Article  CAS  PubMed  Google Scholar 

  16. Preston DL, Kusumi S, Tomonaga M et al (1994) Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res 137:S68–S97

    Article  CAS  PubMed  Google Scholar 

  17. UNSCEAR (1958) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York, pp 1–228

    Google Scholar 

  18. Shimizu Y, Kato H, Schull WJ (1990) Studies on the mortality of A-bomb survivors. 9, Mortality, 1950–1985: Part 2, Cancer mortality based on the recently revised doses (DS86). Radiat Res 121:120–141

    Article  CAS  PubMed  Google Scholar 

  19. Mine M, Okumura Y, Ichimara M et al (1990). Apparently beneficial effect of low to intermediate doses of A-bomb radiation on human lifespan. Int J Radiat Biol 58:1035–1043

    Article  CAS  PubMed  Google Scholar 

  20. Land CE (1980) Estimating cancer risks from low doses of ionizing radiation. Science 209: 1197

    Article  CAS  PubMed  Google Scholar 

  21. Viel JF (1993) Radon exposure and leukemia in adulthood. Int J Epidemiol 22:627–630

    Article  CAS  PubMed  Google Scholar 

  22. Richardson C, Monfort M, Green M et al (1995) Spatial variation of natural radiation and childhood leukemia incidence in Great Britain. Stat Med 14:2487–2501

    Article  CAS  PubMed  Google Scholar 

  23. Craig L, Seidman H (1961) Leukemia and lymphoma mortality in relation to cosmic radiation. Blood 17:319

    CAS  PubMed  Google Scholar 

  24. Evard A-S, Hemon D, Billon S et al (2006) Childhood leukemia incidence and exposure to indoor radon, terrestrial and cosmic γ radiation. Health Phys 90:569–579

    Article  Google Scholar 

  25. Evrard AS, Hemon D, Billon S et al (2005) Ecological association between indoor radon concentration and childhood leukemia incidence in France, 1990–1998. Eur J Cancer Prev 14: 147–157

    Article  CAS  PubMed  Google Scholar 

  26. Laurier D, Valenty M, Tirmarche M (2001) Radon exposure and the risk of leukemia: a review of epidemiological studies. Health Phys 81:272–288

    Article  CAS  PubMed  Google Scholar 

  27. Yoshinaga S, Tokonami S, Akiba S (2005) Residential radon and childhood leukemia: a meta-analysis of published studies. Int Congress Ser 1276:430–431

    Article  Google Scholar 

  28. Canu IG, Ellis ED, Tirmarche M (2008) Cancer risk in uranium workers occupationally exposed to uranium-emphasis on internal exposure. Health Phys 94:1–17

    Article  CAS  PubMed  Google Scholar 

  29. Darby SC, Whitley E, Howe GR et al (1995) Radon and cancers other than lung cancer in underground miners: a collaborative analysis of 11 studies. J Natl Cancer Inst 87:378–384

    Article  CAS  PubMed  Google Scholar 

  30. Xiao WU, Jiang R, Chang X et al (2006) Epidemiologist investigate on mortality of uranium miner in Jiangxi Province. In: Proceedings of the Second Asian and Oceanic Congress for Radiation Protection, 9–13 October 2006, Beijing, China, pp 1314–1318

    Google Scholar 

  31. Veiga LHS, Amaral ECS, Colin D, Koifman S (2006) A retrospective mortality study of workers exposed to radon in a Brazilian underground coal mine. Radiat Environ Biophys 45: 125–134

    Article  CAS  PubMed  Google Scholar 

  32. Ostroumova E, Gagniere B, Lauier D et al (2006) Risk analysis of leukaemia incidence among people living along the Techa River: a nested case-control study. J Radiol Prot 26:17–32

    Article  CAS  PubMed  Google Scholar 

  33. Krestinina L Yu, Preston DL, Ostroumova EV et al (2005) Protracted radiation exposure and cancer mortality in the Techa River cohort. Radiat Res 164:602–611

    Article  CAS  PubMed  Google Scholar 

  34. Soloviev VYu, Semenov VG, Koshurnikova NA et al (2006) ‘Early’ leukaemia effect in prolonged exposure with high doses. Intern J Low Radiat 2:275–284

    Google Scholar 

  35. Vaughan J (1973) Handbook of experimental pathology, Vo l 36: Uranium, plutonium, trans-plutonic elements. Springer, Berlin, p 349

    Google Scholar 

  36. Sanders CL (1996) Prevention and therapy of cancer and other common diseases: alternative and traditional approaches. Infomedix, Richland, WA, 3000pp

    Google Scholar 

  37. Baverstock KF, Papworth D (1989) The UK radium luminizer survey. Br J Radiol 21:71–76

    Google Scholar 

  38. Spiers FW, Lucas HF, Rundo J et al (1983) Leukemia incidence in the U.S. dial workers. Health Phys 44(Suppl 1):65–72

    PubMed  Google Scholar 

  39. Hatch M, Ron E, Bouville A et al (2005) The Chernobyl disaster: cancer following the accident at the Chernobyl nuclear power plant. Epidemiol Rev 27:56–66

    Article  CAS  PubMed  Google Scholar 

  40. Chernobyl Forum 2003–2005. (2006) Chernobyl legacy: health, environmental and socio-economic impacts. IAEA, 57 pages

    Google Scholar 

  41. Bol'shov LA, Gabaraev BA, It'in LA et al (2000) Comparison of accident risks in different energy systems: comments from Russian specialists. IAEA Bull 42(4)

    Google Scholar 

  42. Bennett B, Repacholi M, Carr Z (eds) (2006) Health effects of the chernobyl accident and special health care programmes. World Health Organization, Geneva, pp 57–60

    Google Scholar 

  43. Ivanov VK (2007) Late cancer and noncancer risks among Chernobyl emergency workers of Russia. Health Phys 93:470–479

    Article  CAS  PubMed  Google Scholar 

  44. Howe GR, Zablotska LB, Fix JJ et al (2004) Analysis of the mortality experience amongst U.S. nuclear power industry workers after chronic low-dose exposure to ionizing radiation. Radiat Res 162:517–526

    Article  CAS  PubMed  Google Scholar 

  45. Zablotska LB, Ashmore JP, Howe GR (2004) Analysis of mortality among Canadian nuclear power industry workers after chronic low-dose exposure to ionizing radiation. Radiat Res 161:633–641

    Article  CAS  PubMed  Google Scholar 

  46. Beral V, P Fraser, Both M et al (1987) Epidemiological studies of workers in the nuclear industry. In: Jones RR, Southwood R (eds) Radiation & health. Wiley, New York, pp 97–106

    Google Scholar 

  47. Cardis E, Gilbert ES, Carpenter L et al (1995) Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat Res 142:117–132

    Article  CAS  PubMed  Google Scholar 

  48. Vrijheid M, Cardis E, Ashmore P et al (2008) Ionizing radiation and risk of chronic lympho-cytic leukemia in the 15-country study of nuclear industry workers. Radiat Res 170:661–665

    Article  CAS  PubMed  Google Scholar 

Download references

Editor information

Editors and Affiliations

Appendix

Appendix

Table A11.3 Risk of leukemia mortality in epidemiological studies of populations exposed to ionizing radiation

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2010). Leukemia. In: Sanders, C.L. (eds) Radiation Hormesis and the Linear-No-Threshold Assumption. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03720-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03720-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03719-1

  • Online ISBN: 978-3-642-03720-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics