Skip to main content

Mosquito Research Techniques

  • Chapter
  • First Online:
Mosquitoes and Their Control

Abstract

Basic knowledge about the distribution, abundance, seasonality, and ecology of different mosquito species is essential for a successful control campaign against these insects. For example, knowledge of the population dynamics and migration behaviour of the target organisms are crucial to the design of a control strategy. In parasitological and epidemiological studies, the interaction between the parasite or pathogen, and the vector and host, must be evaluated in order to suppress mosquito-borne diseases successfully. In the initial phases of all mosquito control campaigns, detailed entomological studies are likely to be carried out. In this chapter, the most important methods of mosquito research are presented. A complete review of mosquito sampling techniques and the analysis of collected data is given by Silver (2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Amerasinghe PH, Amerasinghe FP, Konradsen F, Fonseka KT, Wirtz R (1999) Malaria vectors in a traditional dry zone village in Sri Lanka. Am J Trop Med Hyg 60(3):421–429

    PubMed  CAS  Google Scholar 

  • Barnard DR (2005) Biological assay methods for mosquito repellents. J Am Mosq Control Assoc 21(4):12–16

    Article  PubMed  Google Scholar 

  • Bar-Zeev M, Maibach HI, Khan AA (1977) Studies on the attraction of Aedes aegypti (Diptera: Culicidae) to man. J Med Entomol 14:113–120

    PubMed  CAS  Google Scholar 

  • Bhatt RM, Sharma RC, Yadav RS, Sharma VP (1989) Resting of mosquitoes in outdoor pit shelters in Kheda district, Gujerat. Indian J Malariol 26(2):75–81

    PubMed  CAS  Google Scholar 

  • Bohart RM, Washino RK (1978) Mosquitoes of California, 3rd edn. Univ Calif Div Agr Sci Berkeley, Publ No. 4084, p 153

    Google Scholar 

  • Boorman J, Mellor PS, Boreham PFL, Hewett RS (1977) A latex agglutination test for the identification of blood meals of Culicoides (Diptera: Ceratopogonidae). Bull Entomol Res 67:305–311

    Article  Google Scholar 

  • Breteau H (1954) La fievere jaune en Afrique-Occidentale Francaise. Un aspect de la medicine preventive massive. Bull WHO 11:453–481

    PubMed  CAS  Google Scholar 

  • Bull CG, King WV (1923) The identification of the blood meal of mosquitoes by means of the precipitin test. Am J Hyg 3:491–496

    Google Scholar 

  • Bunner BL, Perich MJ, Boobar LR (1989) Culicidae (Diptera) mortality resulting from insecticide aerosols compared with mortality from droplets on sentinel cages. J Med Entomol 26(3):222–225

    PubMed  CAS  Google Scholar 

  • Burkot TR, Goodman WG, DeFoliart GR (1981) Identification of mosquito blood meals by immunosorbent assay. Am J Trop Med Hyg 30(6):1336–1341

    PubMed  CAS  Google Scholar 

  • Butterworth DE (1979) Separation of aedine eggs from soil sample debris using hydrogene peroxide. Mosq News 39(1):139–141

    Google Scholar 

  • Chadee DD, Corbet PS (1987) Seasonal incidence and diel patterns of oviposition in the field of the mosquito, Aedes aegypti (L.) (Diptera: Culicidae) in Trinidad, West Indies: a preliminary study. Ann Trop Med Parasitol 81:151–161

    PubMed  CAS  Google Scholar 

  • Cockcroft A, Cosgrove JB, Wood RJ (1998) Comparative repellency of commercial formulations of deet, permethrin and citronellal against the mosquito Aedes aegypti, using a collagen membrane technique compared with human arm tests. Med Vet Entomol 12(3):289–294

    Article  PubMed  CAS  Google Scholar 

  • Connor ME, Monroe WM (1923) Stegomyia indices and their value in yellow fever control. Am J Trop Med Hyg 3:9–19

    Google Scholar 

  • Cosgrove JB, Wood RJ, Petrić D, Evans DT, Abbott RHR (1994) A convenient mosquito membrane feeding system. J Am Mosq Control Assoc 10(3):434–436

    PubMed  CAS  Google Scholar 

  • Croset H, Papierok B, Rioux JA, Gabinaud A, Cousserans J, Arnaud D (1976) Absolute estimates of larval populations of culicid mosquitoes: comparison of ‘capture-recapture’, ‘removal’ and ‘dipping’ methods. Ecol Entomol 1:251–256

    Article  Google Scholar 

  • de Benedictis J, Chow-Shaffer E, Costero A, Clark GG, Edman DD, Scott TW (2003) Identification of the people from whom engorged Aedes aegypti took blood meals in Florida, Puerto Rico using PCR-based DNA profiling. Am J Trop Med Hyg 68(4):447–452

    Google Scholar 

  • Dennett JA, Vessey NY, Parsons RE (2004) A comparison of seven traps used for collection of Aedes albopictus and Aedes aegypti originating from a large tire repository in Harris County (Houston), Texas. J Am Mosq Control Assoc 20(4):342–349

    PubMed  Google Scholar 

  • Dixon RO, Brust RA (1972) Mosquitoes of Manitoba. III Ecology of larvae in the Winnipeg area. Can Entomol 104:961–968

    Article  Google Scholar 

  • Evans BR, Brevier GA (1969) Measurements of field populations of Aedes aegypti with the ovitrap in 1968. Mosq News 29:347–353

    Google Scholar 

  • Fay RW, Eliason DA (1966) A preferred oviposition site as a surveillance method for Aedes aegypti. Mosq News 26:531–535

    Google Scholar 

  • Freier JE, Francy DB (1991) A duplex cone trap for the collection of adult Aedes albopictus. J Am Mosq Control Assoc 7:73–79

    PubMed  CAS  Google Scholar 

  • French WL, Baker RH, Kitzmiller JB (1962) Preparation of mosquito chromosomes. Mosq News 22:377–383

    Google Scholar 

  • Gentry JW, Moore CG, Hayes DE (1967) Preliminary report on soluble antigen fluorescent antibody technique for identification of host source of mosquito blood meals. Mosq News 27:141–143

    Google Scholar 

  • Gerberg EJ (1970) Manual for mosquito rearing and experimental techniques. J Am Mosq Control Assoc 5:1–109

    Google Scholar 

  • Gilles MT, Wilkes TJ, Jones MDR (1978) Evaluation of a new technique for recording the direction of flight of mosquitoes (Diptera: Culicidae) in the field. Bull Entomol Res 68(1):145–152

    Article  Google Scholar 

  • Gomes LAM, Duarte R, Lima DC, Diniz BS, Serrao ML, Labarthe N (2001) Comparison between precipitin and ELISA test in the blood meal detection of Aedes aegypti (Linnaeus) and Aedes fluviatilis (Lutz) mosquitoes experimentally fed on feline, canine and human hosts. Memorias do Instituto Oswaldo Cruz, Rio de Janeiro 96(5):693–695

    Article  CAS  Google Scholar 

  • Graziosi C, Sakai RK, Romans P (1990) Method for in situ hybridization to polytene chromosomes from ovarian nurse cells of Anopheles gambiae (Diptera: Culicidae). J Med Entomol 27:905–912

    PubMed  CAS  Google Scholar 

  • Green CA (1972) Cytological maps for the practical identification of females of the three freshwater species of the Anopheles gambiae complex. Ann Trop Med Parasitol 66:143–147

    PubMed  CAS  Google Scholar 

  • Green CA, Hunt RH (1980) Interpretation of variation in ovarian polytene chromosomes of Anopheles funestus Giles, and A. parensis Gillies. Genetica 51:187–195

    Article  Google Scholar 

  • Harris H, Hopkinson DA (1976) Handbook of enzyme electrophoreses in human genetics. North Holland Publishing Comp, Amsterdam, Oxford, p 512

    Google Scholar 

  • Hillis DE (1996) Molecular systematics, 2nd edn. Sunderland, MA, p 655

    Google Scholar 

  • Holck AR, Meek CL (1991) Comparison of sampling techniques for adult mosquitoes and other Nematocera in open vegetation. J Entomol Sci 26(2):231–236

    Google Scholar 

  • Hunt RH (1973a) A cytological technique for the study of Anopheles gambiae complex. Parassitologia 15:137–139

    PubMed  CAS  Google Scholar 

  • Irish SR, Chandre F, N’guessan R (2008) Comparison of octenol and BG Lure ®-baited Biogents Sentinel traps and an encephalitis virus surveillance trap in Portland. J Am Mosq Control Assoc 24(3):393–397

    Article  PubMed  Google Scholar 

  • Kline DL (2002) Evaluation of various models of propane-powered mosquito traps. J Vector Ecol 27(1):1–7

    PubMed  Google Scholar 

  • Lee JH, Hassan H, Hill G, Cupp EW, Higazi TB, Mitchell CJ, Godsey MS, Unnasch TR (2002) Identification of mosquito avian derived blood meals by polymerase chain reaction heteroduplex assays. Am J Trop Med Hyg 66(5):599–604

    PubMed  CAS  Google Scholar 

  • Lehane MJ (1991) Biology of blood-sucking insects. Harper Collins Academic, London, UK, p 288

    Book  Google Scholar 

  • Leiser LB, Beier JC (1982) A comparison of oviposition traps and New Jersey light traps for Culex population surveillance. Mosq News 42:391–395

    Google Scholar 

  • Lemenager DC, Bauer SD, Kauffman EE (1986) Abundance and distribution of immature Culex tarsalis and Anopheles freeborni in rice fields of the Sulter-Yuba M A D:1. Initial sampling to detect major mosquito producing rice fields, augmented by adult light trapping. Proc Calif Mosq Vect Control Assoc 53:101–104

    Google Scholar 

  • Magbity EB, Marbiah NT, Maude G, Curtis CF, Bradley DJ, Greenwood BM, Petersen E, Lines JD (1997) Effect of community-wide use of lambdacyhalothrin-impregnated bed nets on malaria vectors in rural Sierra Leone. Med Vet Entomol 11(1):79–86

    Article  PubMed  CAS  Google Scholar 

  • McIver SB (1982) Sensilla of mosquitoes (Diptera: Culicidae). J Med Entomol 19:489–535

    PubMed  CAS  Google Scholar 

  • Mogi M (1978) Population studies on mosquitoes in the rice field area of Nagasaki, Japan, especially on Culex tritaeniorhynchus. Trop Med 20:173–263

    Google Scholar 

  • Mogi M, Choochote W, Khambooruang C, Suwanpanit P (1990) Applicability of presence-absence and sequential sampling for ovitrap surveillance of Aedes (Diptera: Culicidae) in Chiang Mai, northern Thailand. J Med Entomol 27:509–514

    PubMed  CAS  Google Scholar 

  • Niebylski ML, Meek CL (1989) A self-marking device for emergent adult mosquitoes. J Am Mosq Control Assoc 5(1):86–90

    PubMed  CAS  Google Scholar 

  • O’Meara GF, Vose FE, Carlson DB (1989) Environmental factors influencing oviposition by Culex (Culex) (Diptera: Culicidae) in two types of traps. J Med Entomol 26:528–534

    PubMed  Google Scholar 

  • Paing M, Naing TT (1988) Marking of mosquito larvae for mark-release-recapture studies on adults. J Commun Dis 20(4):276–279

    PubMed  CAS  Google Scholar 

  • Papierok B, Croset H, Rioux JA (1975) Estimation de l’effectif des populations larvaires d’ Aedes (O.) cataphylla Dyar 1916 (Diptera, Culicidae), II, Methode utilisant le’coup de louche’ ou ‘dipping’. Cah ORSTOM, ser Ent Med parasitolo 13:47–51

    Google Scholar 

  • Perich MJ, Tidwell MA, Williams DC, Sardelis MR, Pena CJ, Mandeville D, Boobar LR (1990) Comparison of ground and aerial ultra-low-volume applications of malathion against Aedes aegypti in Santa Domingo, Dominican Republic. J Am Mosq Control Assoc 6(1):1–6

    PubMed  CAS  Google Scholar 

  • Pratt HD, Jakob WL (1967) Oviposition trap reference handbook. Aedes aegypti handbook series No. 6, National Communicable Disease Centre, p 33

    Google Scholar 

  • Reiter P (1983) A portable, battery-powered trap for collecting gravid Culex mosquitoes. Mosq News 43:496–498

    Google Scholar 

  • Rohe DL (1974) A dual modification of the CDC miniature light trap. Bull Soc Vector Ecologists 1: 21–29

    Google Scholar 

  • Russell RC (1987) The mosquito fauna of Conjola State Forest on the south coast of New South Wales. Part 2. Female feeding behaviour and flight activity. Gen Appl Entomol 19:17–24

    Google Scholar 

  • Schmeid WH, Takken W, Killen GF, Knols GBJ, Smallegange RC (2008) Evaluation of two counterflow traps for testing behaviour-mediating compounds for the malaria vector Anopheles gambiae s.s. under semi-field conditions in Tanzania. Malar J 7(230)

    Google Scholar 

  • Service MW (1993) Mosquito ecology: field sampling methods. 2nd edn. Elsevier Science Publishers Ltd, Essex, UK, p 988

    Google Scholar 

  • Sharma VP, Patterson RS, LaBrecque GC, Singh KRP (1976) Three field release trials with chemosterilized Culex pipiens fatigans Wied in a Delhi village. J Commu Dis 8:18–27

    Google Scholar 

  • Sharpington PJ, Healy TP, Copland MJW (2000) A wind tunnel assay for screening mosquito repellents. J Am Mosq Control Assoc 16(3):234–240

    PubMed  CAS  Google Scholar 

  • Snow KR (1990) Mosquitoes. naturalists’ handbooks 14. Richmond Publishing Co Ltd Slough, England, p 66

    Google Scholar 

  • Takken W (1991) The role of olf-action in host-seeking of mosquitoes: a review. Insect Sci Appl 12:287–295

    Google Scholar 

  • Takken W, Kline DL (1989) Carbon dioxide and 1-octen-3-ol as mosquito attractants. J Am Mosq Control Assoc 5:311–316

    PubMed  CAS  Google Scholar 

  • Thaggard CW, Eliason DA (1969) Field evaluation of components for an Aedes aegypti (L) oviposition trap. Mosq News 29:608–612

    Google Scholar 

  • Tietze NS, Stephenson MF, Sidhorn NT, Binding PL (2003) Mark-recapture of Culex erythrothorax in Santa Cruz County, California. J Am Mosq Control Assoc 19(2):134–138

    PubMed  Google Scholar 

  • Torr SJ, Torre A, Calzetta della M, Costantini C, Vale GA (2008) Towards a fuller understanding of mosquito behaviour: use of electrocuting grids to compare the odour-orientated responses of Anopheles arabiensis and An. quadriannulatus. Med Vet Entomol 22(2):93–108

    Google Scholar 

  • Tsai TF, Smith GC, Happ CM, Kork LJ, Jakob WL, Bolin RA, Francy DB, Lampert KJ (1989) Surveillance of St Louis encephalitis virus vectors in Grand Junction, Colorado in 1987. J Am Mosq Control Assoc 5(2):161–165

    PubMed  CAS  Google Scholar 

  • WHO (1975) Manual on practical entomology in malaria, Part II: Methods and techniques, World Health Organization Offset Publ, Geneva 13:191

    Google Scholar 

  • WHO (1996b) Protocols for the laboratory and field evaluation of insecticides and repellents CTD/WHOPES/IC/96:1

    Google Scholar 

  • WHO (1998b) Insecticide resistance monitoring WHO/CDS/CPC/MAL/98:12

    Google Scholar 

  • WHO (2001a) Supplies for monitoring insecticide resitance in disease vectors WHO/CDS/CPE/PVC/2001:2

    Google Scholar 

  • WHO (2005a) Guidelines for laboratory and field testing of long-lasting insecticidal mosquito nets. WHO/CDS/WHOPES/GCDPP/2005.11

    Google Scholar 

  • WHO (2005b) Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13

    Google Scholar 

  • WHO (2006) Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets WHO/CDS/NTD/WHOPES/GCDPP/2006:3

    Google Scholar 

  • Yasuno M, Kazmi SJ, LaBrecque GC, Rajagopalan PK (1973) Seasonal change in larval habitats and population density of Culex fatigans in Delhi Villages, WHO/VBC/73, 429:12

    Google Scholar 

  • WHO (2005b) Guidelines for laboratory and field testing of long-lasting insecticidal mosquito nets. WHO/CDS/WHOPES/GCDPP/2005.11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Becker .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becker, N. et al. (2010). Mosquito Research Techniques. In: Mosquitoes and Their Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92874-4_4

Download citation

Publish with us

Policies and ethics