Skip to main content

Medical Importance of Mosquitoes

  • Chapter
  • First Online:
Mosquitoes and Their Control

Abstract

Mosquitoes are responsible for the transmission of many medically important pathogens and parasites such as viruses, bacteria, protozoans, and nematodes, which cause serious diseases such as malaria, dengue, yellow and Chikungunya fever, encephalitis or filariasis (Kettle 1995; Beaty and Marquardt 1996; Lehane 1991; Eldridge and Edman 2000). Transmission can be mechanical (e.g. Myxoma virus causing myxomatosis in rabbits) or biological. The latter is more complex because it involves an obligatory period of replication and/or development of the pathogen or parasite in the vector insect. Due to their blood-sucking behaviour, mosquitoes are able to acquire the pathogens or parasites from one vertebrate host and pass them to another, if the mosquito’s ecology and physiology is appropriate for transmission. Highly efficient vectors have to be closely associated with the hosts and their longevity has to be sufficient enough to enable the pathogens/parasites to proliferate and/or to develop to the infective stages in the vector. For successful transmission, multiple blood-meals are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aranda C, Panyella O, Eritja R, Castella J (1998) Canine filariasis. Importance and transmission in the Baix Llobregat area, Barcelona (Spain). Vet Parasitol 77:267–275

    Article  PubMed  CAS  Google Scholar 

  • Aspöck H (1979) Biogeographie der Arboviren Europas Beitr Z Geoökologie d Menschen, 3. Geomed Symp Geograph Z Beiheft 51:11–28

    Google Scholar 

  • Aspöck H (1996) Stechmücken als Virusüberträger in Mitteleuropa. Nova Acta Leopoldina 292:37–55

    Google Scholar 

  • Baqar S, Hayes CG, Murphy JR, Watts DM (1993) Vertical transmission of West Nile virus by Culex and Aedes species mosquitoes. Am J Trop Med Hyg 48(6):757–762

    PubMed  CAS  Google Scholar 

  • Bardos V, Cupkova B (1962) The Calovo virus-the second virus isolated from mosquitoes in Czechoslovakia. J Hyg Epid Microbiol Immunol 6:186–192

    CAS  Google Scholar 

  • Beaty BJ, Marquardt WC (1996) The biology of disease vectors. University Press of Colorado, Colorado, USA, p 632

    Google Scholar 

  • Becker N, Djakaria S, Kaiser A, Zulhasril O, Ludwig HW (1991) Efficacy of a new tablet formulation of an asporogenous strain of Bacillus thuringiensis israelensis against larvae of Aedes aegypti. Bull Soc Vector Ecol 16(1):176–182

    Google Scholar 

  • Boreham PFL, Atwell RB (eds) (1988) Dirofilariasis. CRC Press, Boca Raton, FL

    Google Scholar 

  • Bruce-Chwatt LJ, Draper CC, Avradamis D, Kazandzoglou O (1975) Sero-epidemiologica: surveillance of disappearing malaria in Greece. J Trop Med Hyg 78:194–200

    PubMed  CAS  Google Scholar 

  • Cantile C, di Guardo G, Eleni C, Aruspici M (2000) Clinical and neuropathological features of West Nile virus equine encephalomyelitis in Italy. Equine Vet J 32(1):31–35

    Article  PubMed  CAS  Google Scholar 

  • Carlson JO (1995) Molecular genetic manipulation of vectors. In: The biology of disease vectors. University Press of Colorado, Colorado, USA, pp 215–228

    Google Scholar 

  • Chippaux A, Rageau J, Mouchet J (1970) Hibernation de l’arbovirus Tahyna chez Cu!ex modestus Fic en France C R Acad Sci (D) Paris 270:1648–1650

    Google Scholar 

  • Crampton JM (1992) Potential application of molecular biology in entomology. In: Crampton JM, Eggleston P (eds) Insect molecular science. San Diego Academic Press, London, pp 4–20

    Google Scholar 

  • Crampton JM, Eggleston P (1992) Biotechnology and the control of mosquitoes. In: Young WK (ed) Animal parasite control utilizing biotechnology. CRC Press Inc. Uniscience Volumes, Boca Raton, FL, pp 333–350

    Google Scholar 

  • Crampton JM, Morris A, Lycett G, Warren A, Eggleston P (1990) Transgenic mosquitoes: A future vector control strategy? Parasitol Today 6:31–36

    Article  PubMed  CAS  Google Scholar 

  • Danielova V (1992) Relationships of mosquitoes to Tahyna virus as determinant factors of its circulation in nature. Academia Publishing House of the Czechoslovak, Acad of Sci, Prague

    Google Scholar 

  • Danielova V, Ryba J (1979) Laboratory demonstration of transovarial transmission of Tahyna virus in Aedes vexans and the role of this mechanism in overwintering of this arbovirus. Folia Parasitol 26:361–366

    Google Scholar 

  • Dongus S, Nyika D, Kannady K, Mtasiwa D, Mshinda H, Fillinger U, Drescher AW, Tanner M, Castro MC, Killeen GF (2007) Participatory mapping of target areas to enable operational larval source management to suppress malaria vector mosquitoes in Dar es Salaam, Tanzania. Am J Trop Med Hyg 77:74–74

    Google Scholar 

  • Eads RB (1972) Recovery of Aedes albopictus from used tires shipped to United States ports. Mosq News 32(1):113–114

    Google Scholar 

  • ECDC (2008) Europe faces heightened risk of vector-borne disease outbreaks such as chikungunya fever. ECDC, Stockholm

    Google Scholar 

  • Eldrige BF, Edman JD (2000) Medical entomology. Kluwer, Dordrecht, p 659

    Book  Google Scholar 

  • Eltari E, Zeka S, Gina A, Sharofi F, Stamo K (1987) Epidemiological data on some foci of haemorrhagic fever in our country (in Albanian). Revista Mjekesore 1:5–9

    Google Scholar 

  • Eritja R, Raúl E, Javier L, Eduard M, Ricardo M, David R, Santiago R (2005) Worldwide invasion of vector mosquitoes: present European distribution and challenges for Spain. Biol Invasions 7:87–97

    Article  Google Scholar 

  • Espmark Ä, Niklasson B (1984) Ockelbo disease in Sweden: epidemiological, clinical, and virological data from the 1982 outbreak. Am J Trop Med Hyg 33:203–1211

    Google Scholar 

  • Etang J, Chandre F, Guillet P, Manga L (2004) Reduced bio-efficacy of permethrin EC impregnated bednets against an Anopheles gambiae strain with oxidase-based pyrethroid tolerance. Malar J 3:46–46

    Article  PubMed  Google Scholar 

  • Filipe AR (1972) Isolation in Portugal of West Nile virus from Anopheles maculipennis mosquitoes. Acta Virol (Praha) 16:361

    Google Scholar 

  • Filipe AR (1990) Arboviruses in the Iberian peninsula. Acta Virol, Praha 34(6):582–591

    CAS  Google Scholar 

  • Fillinger U, Lindsay SW (2006) Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural Kenya. Trop Med Int Health 11:1629–1642

    Article  PubMed  CAS  Google Scholar 

  • Francki RIB, Fauquet CM, Knudson DL, Brown F (1991) Classification and nomenclature of viruses. Fifth report of the international committee on taxonomy of viruses. Archives of virology, Suppl 2. Springer Verlag, Wien, p 452

    Book  Google Scholar 

  • Francy DB, Jaenson TGT, Lundström JO, Schildt EB, Espmark A, Henriksson B, Niklasson B (1989) Ecologic studies of mosquitoes and birds as hosts of Ockelbo virus in Sweden, and isolation of Inkoo and Batai viruses from mosquitoes. Am J Trop Med Hyg 41:355–363

    PubMed  CAS  Google Scholar 

  • Garnham PCC (1966) Malaria parasites and other haemosporidia. Blackwell Scientific, Oxford, p 1114

    Google Scholar 

  • Garnham PCC (1980) Malaria in its various vertebrate hosts. In: Kreier JP (ed) Malaria, vol. 1. Academic Press, New York, pp 95–144

    Google Scholar 

  • Gratz NG (1999) Emerging and resurging vector-borne diseases. Ann Rev Entomol 44:51–75

    Article  CAS  Google Scholar 

  • Gresikova M, Sekeyova M, Batikova M, Bielikova V (1973) Isolation of Sindbis virus from the organs of a hamster in east Slovakia. In: 1. Internationales Arbeitskolloquium über Naturherde von Infektionskrankheiten in Zentraleuropa, 17–19 April 1973, Illmitz and Graz, pp 59–63

    Google Scholar 

  • Halouzka J, Pejcoch M, Hubalek Z, Knoz J (1991) Isolation of Tahyna virus from biting midges (Diptera: Ceratopogonidae). Czecho-Slovakia Acta Virol 35:247–251

    Google Scholar 

  • Halstead SB (1980) Dengue haemorrhagic fever – a public health problem and a field for research. Bull WHO 58(1):1–21

    PubMed  CAS  Google Scholar 

  • Hannoun C, Panthier R, Mouchet J, Eouzan JP (1964) Isolement en France du virus West-Nile a’partir de malades et du vecteur Culex modestus Ficalbi. C R Acad Sci D Paris 259:4170–4172

    CAS  Google Scholar 

  • Hubalek Z, Halouzka J (1999) West Nile Fever – a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5:643–650

    Article  PubMed  CAS  Google Scholar 

  • Jetten TH, Takken W (1994) Anophelism without malaria in Europe. A review of the ecology and distribution of the genus Anopheles in Europe. Wageningen Agric Univ, p 69

    Google Scholar 

  • Jourbert L, Oudar J, Hannoun C, Beytout D, Corniou B, Guillon JC, Panthier R (1970) Epidemiologie du virus West Nile: Etude d’un foyer en Camargue. IV. La meningoencephalomyelite du cheval. Ann Inst Pasteur 118:239–247

    Google Scholar 

  • Karabatsos N (1985) International catalogue of arboviruses: including certain other viruses of vertebrates, 3rd edn. Am Soc Trop Med Hyg 1:147

    Google Scholar 

  • Kettle DS (1995) Medical and veterinary entomology. CAB International, 2nd edn. Oxon, UK, p 725

    Google Scholar 

  • Kidwell MG, Ribeiro JMC (1992) Can transposable elements be used to drive disease refractoriness genes into vector populations? Parasitol Today 8:325–329

    Article  PubMed  CAS  Google Scholar 

  • Kozuch O, Labuda M, Nosek J (1978) Isolation of Sindbis virus from the frog Rana ridibunda. Acta Virol, Praha 22:78

    Google Scholar 

  • Kunz C (1969) Arbovirus-B-Infektionen. In: Grumbach A, Kikuth W eds, Thieme G (eds) Die Infektionskrankheiten des Menschen und ihre Erreger, Bd II, Stuttgart, pp 1595–1628

    Google Scholar 

  • Labuda M, Kozuch O, Gresikova M (1974) Isolation of West Nile virus from Aedes cantans mosquitoes in west Slovakia. Acta Virol Praha 18:429–433

    Google Scholar 

  • Lehane MJ (1991) Biology of blood-sucking insects. Harper Collins Academic, London, UK, p 288

    Book  Google Scholar 

  • Lok JB (1988) Dirofilaria spp.: taxonomy and distribution. In: Boreham PFL, Atwell RB (eds) Dirofilariasis. CRC Press, Boca Raton, FL

    Google Scholar 

  • Lundström JO (1994) Vector competence of western European mosquitoes for arboviruses: A review of field and experimental studies. Bull Soc Vect Ecol 19:23–36

    Google Scholar 

  • Lundström JO (1999) Mosquito-borne viruses in Western Europe: A review. J Vect Ecol 24(1):1–39

    Google Scholar 

  • Lundström JO, Vene S, Espmark A, Engvall M, Niklasson B (1991) Geographical and temporal distribution of Ockelbo disease in Sweden. Epidem Infect 106:567–574

    Article  Google Scholar 

  • Lvov DK, Skvortsova TM, Brerezina LK, Gromashevsky VL, Yakolev BI, Gushchin BV, Aristova VA, Sidorova GA, Gushchina EL, Klimenko SM, Lvov SD, Khutoretskaya NI, Myasinkova A, Khizhnyakova TM (1984) Isolation of Karelian fever agent from Aedes communis mosquitoes. Lancet II:399–400

    Google Scholar 

  • Makundi EA, Mboera LEG, Malebo HM, Kitua AY (2007) Priority setting on malaria interventions in Tanzania: strategies and challenges to mitigate against the intolerable burden. Am J Trop Med Hyg 77:106–111

    PubMed  Google Scholar 

  • Manson-Bahr PEC, Bell DR (1987) Manson’s tropical diseases. Bailliere-Tindall, London

    Google Scholar 

  • Marchant P, Eling W, van Gemert GJ, Leake CJ, Curtis CF (1998) Could British mosquitoes transmit falciparum malaria? Parasitol Today 14(9):344–345

    Article  PubMed  CAS  Google Scholar 

  • Mitchell CJ, Lvov SD, Savage HM, Calisher CH, Smith GC, Lvov DK, Gubler DJ (1993) Vector and host relationships of California sero-group viruses in western Siberia. Am J Trop Med Hyg 49:53–62

    PubMed  CAS  Google Scholar 

  • Monath TP (1988) The arboviruses: epidemiology and ecology, vols 1–5. CRC Press, Boca Raton, FL

    Google Scholar 

  • Mouchet J, Rageau J, Laumond C, Hannoun C, Beytout D, Oudar J, Corniou B, Chippaux A (1970) Epidemiologie du virus West Nile: etude d’un foyer en Camargue. V. Le vecteur: Culex modestus Ficalbi (Diptera, Culicidae). Ann Inst Pasteur 118:839–855

    CAS  Google Scholar 

  • Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD (1995) Virus taxonomy – classification and nomenclature of viruses. Sixth report international committee on taxon viruses. Springer, New York, p 586

    Google Scholar 

  • Niklasson B, Espmark Ä, LeDuck JW, Gargan TP, Ennis WA, Tesh RB, Main AJ Jr (1984) Association of a Sindbis-like virus with Ockelbo disease in Sweden. Am J Trop Med Hyg 33:1212–1217

    PubMed  CAS  Google Scholar 

  • Norder H, Lundström JO, Kozuch O, Magnius LO (1996) Genetic relatedness of Sindbis virus strains from Europe, Middle East and Africa. Virology 222:440–445

    Article  PubMed  CAS  Google Scholar 

  • Norrby E (2007) Yellow fever and Max Theiler: the only Nobel Prize for a virus vaccine. J Exp Med 2004:2779–2784

    Article  Google Scholar 

  • Panthier R, Hannoun C, Beytout D, Mouchet J (1968) Epidemiologie du virus West Nile. Etude d’un foyer en Camargue. III. Les maladies humaines. Ann Inst Pasteur 115:435–445

    CAS  Google Scholar 

  • Papaevangelou G, Halstead SB (1977) Infections with two dengue viruses in Greece in the 20th century. Did dengue hemorhagic fever occur in the 1928 epidemic? J Trop Med Hyg 80:46–51

    PubMed  CAS  Google Scholar 

  • Peyton EL, Campbell SR, Candeletti TM, Romanowski M, Crans WJ (1999) Aedes (Finlaya) japonicus japonicus (Theobald), a new introduction into the United States. J Am Mosq Control Assoc 15(2):238–241

    PubMed  CAS  Google Scholar 

  • Pilaski J, Mackenstein H (1985) Nachweis des Tahyna-Virus bei Stechmücken in zwei verschiedenen europäischen Naturherden. Zbl Bakt Hyg, I Abt Orig B 180:394–420

    CAS  Google Scholar 

  • Pratt JJ, Heterick RH, Harrison JB, Haber L (1946) Tires as a factor in the transportation of mosquitoes by ships. Mil Surgeon 99:785–788

    Google Scholar 

  • Protopopoff N, Bortel van Marcotty WT, Herp van M, Maes P, Baza D, Alessandro U, Coosemans M (2007a) Spatial targeted vector control in the highlands of Burundi and its impact on malaria transmission. Malar J 6:158

    Google Scholar 

  • Rai KS (1995) Genetic control of vectors. In: Beaty BJ, Marquardt WC (eds) The biology of disease vectors. University Press of Colorado, Colorado, USA, pp 564–574

    Google Scholar 

  • RBM (2005) World Malaria report 2005. WHO Geneva, S 293

    Google Scholar 

  • Reeves WC (1990) Epidemiology and control of mosqutio-borne arboviruses in California, 1943–1987. Calif Mosq Vector Control Assoc, Sacramento, CA, p 508

    Google Scholar 

  • Reisen W, Lothrop H, Chiles R et al (2004) West Nile virus in California. Emerg Infect Dis 10:1369–1378

    Article  PubMed  Google Scholar 

  • Schaffner F, Chouin S (2003) First record of Aedes (Finlaya) japonicus japonicus (Theobald, 1901) in metropolitan France. J Am Mosq Control Assoc 19(1):1–5

    PubMed  Google Scholar 

  • Shirako Y, Niklasson BJ, Dalrymple M, Strauss EG, Strauss JH (1991) Structure of the Ockelbo virus genome and its relationship to other Sindbis viruses. Virology 182:753–764

    Article  PubMed  CAS  Google Scholar 

  • Sluka F (1969) The clinical picture of the Calovo virus infection in Arboviruses of the California complex and the Bunyamwera group. Proc symposium Smolenice, Publ House Slovak Accad Sci, Bratislava, pp 337–339

    Google Scholar 

  • Sprenger D, Wuithiranyagool T (1986) The discovery and distribution of Aedes albopictus in Harris County, Texas. J Am Mosq Contr Assoc 2:217–219

    CAS  Google Scholar 

  • Staples A, Monath TP (2008) Yellow fever:100 years of discovery. JAMA 300(8):960–962

    Article  PubMed  CAS  Google Scholar 

  • Strauss JH, Strauss EG (1994) The alphaviruses: Gene expression, replication, and evolution. Microbiol Rev 58:491–562

    PubMed  CAS  Google Scholar 

  • Tesh RB (1990) Undifferentiated arboviral fevers. In: Warren KS, Mahmoud AAF (eds) Tropical and geographical medicine. McGraw-Hill, New York, pp 685–691

    Google Scholar 

  • Traavik T, Mehl R, Wiger R (1978) California encephalitis group viruses isolated from mosquitoes collected in southern and arctic Norway. Acta Path Microbiol Scand Sect B 86:335–341

    Google Scholar 

  • Traavik T, Mehl R, Wiger R (1985) Mosquito-borne arboviruses in Norway: Further isolations and detection of antibodies to California encephaltis viruses in human, sheep and wildlife sera. J Hyg Camb 94:111–122

    Article  PubMed  CAS  Google Scholar 

  • Walker K, Lynch M (2007) Contributions of Anopheles larval control to malaria suppression in tropical Africa:review of achievements and potential. J Med Vet Entomol 21:2–21

    Article  CAS  Google Scholar 

  • Wernsdorfer WH (1980) The importance of malaria in the world, vol 1. In: Kreier JP (ed) Malaria. Academic Press, New York, pp 1–93

    Google Scholar 

  • White GB (1978) Systematic reappraisal of the Anopheles maculipennis complex. Mosq Syst 10:13–44

    Google Scholar 

  • WHO (1993) Tropical disease research: progress 1991–1992, 11th programme report of the UNDP/World Bank/WHO special programme for research and training in tropical diseases (TDR), WHO Geneva, p 134

    Google Scholar 

  • WHO (2000) Report of the fourth WHOPES Working Group meeting, Geneva Review of: IR3535; KBR3023; (RS)-Methoprene 20% EC, Pyriproxyfen 0.5% GR and Lambda-Cyhalothrin 2.5% CS. Geneva WHO/CDS/WHOPES/2001.2

    Google Scholar 

  • WHO (2008) World malaria report 2008. WHO/HTM/GMP/2008

    Google Scholar 

  • Wojta J, Aspöck H (1982) Untersuchungen über die Möglichkeiten der Einschleppung durch Stechmücken übertragener Arboviren durch Vögel nach Mitteleuropa. Mitt Österr Ges Tropenmed Parasitol 4:85–98

    Google Scholar 

  • Work TH, Hurlbut HS, Taylor RM (1953) Isolation of West Nile Virus from hooded crows and rock pigeons in the Nile Delta. Proc Soc Exptl Biol Med 84:719–722

    CAS  Google Scholar 

  • Worrall E (2007) Integrated vector management programs for malaria control-cost analysis for large-scale use of larval source management in malaria control. Bureau Global Hlth, USA Inter Development (USAID) GHS-I-01-03-00028-000-1

    Google Scholar 

  • WHO (1997b) World malaria situation in 1994. Part III. Europe, South-East Asia, Western Pacific. Wkly Epidem Rec 72(38):285–290

    Google Scholar 

  • WHO (2000) Report of the fourth WHOPES Working Group meeting, Geneva Review of: IR3535;KBR3023; (RS)-Methoprene 20% EC, Pyriproxyfen 0.5% GR and Lambda-Cyhalothrin 2.5% CS. Geneva WHO/CDS/WHOPES/2001.2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Becker .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becker, N. et al. (2010). Medical Importance of Mosquitoes. In: Mosquitoes and Their Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92874-4_3

Download citation

Publish with us

Policies and ethics