Skip to main content

Zusammenfassung

Dieses Kapitel soll die Grundprinzipien der Ovarfunktion aufzeigen, um die Pathophysiologie des Ovars und neuere Therapieansätze verständlich zu machen. Ansatzweise soll auch wissenschaftliches Neuland erwähnt werden, dessen Bewertung derzeit noch nicht möglich ist, z. B. die Rolle der Innervation des Ovars und der inzwischen zahlreichen im Ovar aufgefundenen protein- und peptidartigen Stoffe, denen man eine lokale parakrine Wirkung unterstellt (▸ Kap. 5.4.9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adams TE, Norman RL, Spies HG (1981) Gonadotropin-releasing hormone receptor binding and pituitary responsiveness in estradiolprimed monkeys. Science 213: 1388

    PubMed  CAS  Google Scholar 

  • Adashi EY (1989) Putative intrauterine regulators. Sem Reprod Endocrinol 7: 1

    Google Scholar 

  • Adashi EY (1996) The ovarian follicular apparatus. In: Adashi EY, Rock JA, Rosenwaks Z (eds) Reproductive endocrinology, surgery and technology. Lippincott-Raven, Philadelphia New York, p 17

    Google Scholar 

  • Andersen CY, Byskov AG (2006) Estradiol and regulation of anti-Mullerian hormone, inhibin-A, and inhibin-B secretion: analysis of small antral and preovulatory human follicles’ fluid. J Clin Endocrinol Metab 91: 4064–4069

    PubMed  CAS  Google Scholar 

  • Asashima M, Nakano H, Uchiyama H et al. (1991) Follistatin activity in the mesoderm activity of activin A and the vegetalizing factor from chicken embryo. Roux’s Arch Develop Biol 200: 4

    CAS  Google Scholar 

  • Ball P, Gelbke P, Knuppen R (1975) The excretion of 2-hydroxyestrone during the menstrual cycle. J Clin Endocrinol Metab 40: 406

    PubMed  CAS  Google Scholar 

  • Bohnet HG, Dahlen HG, Wuttke W, Schneider HPG (1976) Hyperprolactinemic anovulatory syndrome. J Clin Endocrinol Metab 42: 132

    PubMed  CAS  Google Scholar 

  • Bonavera JJ, Sahu A, Kalra PS, Kalra SP (1993) Evidence that nitric oxide may mediate the ovarian steroid-induced luteinizing hormone surge: Involvement of excitatory amino acids. Endocrinol 133: 2481

    CAS  Google Scholar 

  • Brännström M, Norman RJ (1993) Involvement of leukocytes and cytokines in the ovulatory process and corpus luteum function. Human Reprod 8: 1762

    Google Scholar 

  • Brown GM (1992) Day-night rhythm disturbance, pineal function and human disease. Horm Res 37 (Suppl 3): 105

    PubMed  Google Scholar 

  • Brown JD, Gronow M (1985) Endocrinology of ovulation prediction. In: Shearman R (ed) Clinical reproductive endocrinology. Churchill Livingston, Edinburgh, p 165

    Google Scholar 

  • Burger HG (1993) Evidence for a negative feedback role of inhibin in follicle stimulating hormone regulation in women. Human Reprod 8 (Suppl 2): 129

    CAS  Google Scholar 

  • Burger HG, Findlay JK, Robertson DM (1996) Inhibin/Activin/Follistatin. In: Adashi EY, Rock JA, Rosenwaks Z (eds) Reproductive endocrinology, surgery and technology. Lippincott Raven, Philadelphia New York, p 801

    Google Scholar 

  • Cagnacci A, Paoletti AM, Soldani R, Orru M, Maschio E, Melis GB (1995a) Melatonin enhances the luteinizing hormone and follicle-stimulating hormone responses to gonadotropin-releasing hormone in the follicular, but not in the luteal, menstrual phase. J Clin Endocrinol Metab 80: 1095

    PubMed  CAS  Google Scholar 

  • Cagnacci A, Soldani R, Yen SCS (1995b) Exogenous melatonin enhances luteinizing hormone levels of women in the follicular but not in the luteal menstrual phase. Fertil Steril 63: 996

    PubMed  CAS  Google Scholar 

  • Cardinali DP (1981) Melatonin. A mammalian pineal hormone. Endocrine Rev 2: 327

    CAS  Google Scholar 

  • Carmel PD, Araki S, Ferin M (1976) Prolonged stalk portal blood collection in rhesus monkeys: pulsatile release of gonadotropin-releasing hormone (GnRH). Endocrinol 99: 243

    CAS  Google Scholar 

  • Carr BR, MacDonald PC, Simpson ER (1982) The role of lipoproteins in the regulation of progesterone secretion by the human corpus luteum. Fertil Steril 38: 303

    PubMed  CAS  Google Scholar 

  • Carr BR, Sadler RK, Rochelle DDB, Stalmach MA, MacDonald PC, Simpson ER (1981) Plasma lipoprotein regulation of progesterone biosynthesis by human corpus luteum tissue in organ culture. J Clin Endocrinol Metab 52: 875

    PubMed  CAS  Google Scholar 

  • Channing CP, Schaerf FW, Anderson LD, Tsafriri A (1980) Ovarian follicular and luteal physiology. In: Reproductive physiology III. Int Rev Physiol 22: 117

    PubMed  CAS  Google Scholar 

  • Clark IJ (1995) The preovulatory LH surge — a case of a neuroendocrine switch. Trends Endocrinol 6: 241

    Google Scholar 

  • Couzinet B, Schaison G (1993) The control of gonadotropin secretion by ovarian steroids. Human Reprod 8 (Suppl 2): 97

    CAS  Google Scholar 

  • DePaolo LV, Bicsack TA, Erickson GF et al. (1991) Follistatin and activin: a potential regulatory system within diverse tissues. Proc Soc Endocrinol Biol Med 198: 500

    CAS  Google Scholar 

  • de Vet A, Laven JS, de Jong FH, Themmen AP, Fauser BC (2002) Antimullerian hormone serum levels: a putative marker for ovarian aging. Fertil Steril 77: 357–362

    PubMed  Google Scholar 

  • Dhillo WA, Chaudri OB, Thompson, EL et al ((2007) Kisspeptin-54 stimulates gonadotropin release most potentely during the preovulatory phase of the menstrual cycle in women. J Clin Endocr Metab 92: 3958

    PubMed  CAS  Google Scholar 

  • Dierschke DJ, Bhattacharya AN, Atkinson LE, Knobil E (1970) Circhoral oscillations of plasma LH levels in the ovarectomized rhesus monkey. Endocrinology 87: 850

    PubMed  CAS  Google Scholar 

  • DiZerega GS, Hodgen GD (1981) Luteal phase dysfunction infertility: A sequel to aberrant folliculogenesis. Fertil Steril 35: 489

    PubMed  CAS  Google Scholar 

  • Erickson GF, Danforth DR (1995) Ovarian control of follicle development. Am J Obstet Gynecol 172: 736

    PubMed  CAS  Google Scholar 

  • Espey LI (1994) Current status of the hypothesis that mammalian ovulation is comparable to an inflammatory reaction. Biol Reprod 50: 233

    PubMed  CAS  Google Scholar 

  • Ferin M, van Vugt D, Wardlaw S (1984) The hypothalamic control of the menstrual cycle and the role of endo-genous opioid peptids. Recent Progr Horm Res 40: 441

    PubMed  CAS  Google Scholar 

  • Filicori M, Butler JP, Crowley WF Jr (1984) Neuroendocrine regulation of the corpus luteum in the human evidence for pulsatile progesteron secretion. J Clin Invest 73: 1638

    PubMed  CAS  Google Scholar 

  • Filicori M, Cognigni GE, Tabarelli C et al. (2002). Stimulation and growth of antral ovarian follicles by selective LH activity administration in women. J Clin Endocrinol Metab 87: 1156–1161

    PubMed  CAS  Google Scholar 

  • Filicori M, Santoro N, Merriam G, Crowley WF Jr (1986) Characterization of the physiological pattern of episodic gonadotropin secretion throughout the human menstrual cycle. J Clin Endocrinol Metab 62: 1136

    PubMed  CAS  Google Scholar 

  • Fink G (1978) The development of the releasing factor concept. Clin Endocrinol 5 (Suppl): 245s

    Google Scholar 

  • Fraser HM, Lunn SF (1993) Does inhibin have an endocrine function during the menstrual cycle? Trends Endocrinol Metab 4: 187

    PubMed  CAS  Google Scholar 

  • Gnoth C, Frank-Herrmann P, Bremme M, Freundl G, Godehardt E (1996) Wie korrelieren selbstbeobachtete Zyklussymptome mit der Ovulation? Zentralbl Gynakol 118: 650–654

    PubMed  CAS  Google Scholar 

  • Goodman AL, Hodgen GD (1983) The ovarian triad of the primate menstrual cycle. Recent Progr Horm Res 39: 1

    PubMed  CAS  Google Scholar 

  • Grossmann A, Moult PJA, Gaillard RC et al. (1981) The opioid control of LH and FSH release: effect of metencephalin analogue and naloxone. Clin Endocrinol (Oxf) 14: 41

    Google Scholar 

  • Halme J, Ikonen M, Rutanen EM, Seppälä M (1978) Gonadotropin receptors of human corpus luteum during menstrual cycle and pregnancy. Am J Obstet Gynecol 131: 728

    PubMed  CAS  Google Scholar 

  • Hillensjö R, Batta SK, Schwartz-Kripner A, Wentz AC, Sulewski J, Channing CP (1978) Inhibitory effect of human follicular fluid upon the maturation of porcine oocytes in culture. J Clin Endocrinol Metab 47: 1332

    PubMed  Google Scholar 

  • Hillier SG (1994) Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Human Reprod 9: 188

    CAS  Google Scholar 

  • Himelstein-Braw R, Byskov AG, Peters H, Faber M (1976) Follicular atresia in the infant human ovary. J Reprod Fertil 46: 55

    Article  PubMed  CAS  Google Scholar 

  • Hinney B, Henze C, Wuttke W (1995) Regulation of luteal function by luteinizing hormone and prolactin at different times of the luteal phase. Eur J Endocrinol 133: 701

    PubMed  CAS  Google Scholar 

  • Hoffmann F (1960) Untersuchungen über die hormonale Beeinflussung der Lebensdauer des Corpus luteum im Zyklus der Frau. Geburtshilfe Frauenheilkd 20: 1153

    PubMed  CAS  Google Scholar 

  • Hsueh AJW, Billig H, Tsafriri (1994) Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocrine Rev 15: 707

    CAS  Google Scholar 

  • Huber J (1998) Endokrine Gynäkologie. Maudrich, Wien München Bern

    Google Scholar 

  • Ivell R, Schmale H, Richter D (1983) Vasopressin and oxytocin precursors as model preprohormones. Neuroendocrinology 37: 235

    PubMed  CAS  Google Scholar 

  • Jin L, Zhang S, Burguera BG et al. (2000) Leptin and leptin receptor expression in rat and mouse pituitary cells. Endocrinology 141: 333

    PubMed  CAS  Google Scholar 

  • Judd SJ (1985) The neuroendocrinology of reproduction. In: Shearman RP (ed) Clinical reproductive endocrinology. Churchill Livingstone, Edinburgh, p 1

    Google Scholar 

  • Jureus A, Cunningham MJ, McClain ME et al. (2000) Galanin-like peptide (GALP) is a target for regulation by leptin in the hypothalamus of the rat. Endocrinology 141: 2703

    PubMed  CAS  Google Scholar 

  • Kalra SP (1993) Mandatory neuropeptide-steroid signaling for the preovulatory luteinizing hormone-releasing hormone discharge. Endocrine Rev 14: 507

    CAS  Google Scholar 

  • Karsch FJ, Sutton GP (1976) An intra-ovarian site for the luteolytic action of estrogen in the rhesus monkey. Endocrinology 98: 553

    PubMed  CAS  Google Scholar 

  • Khan-Dawood FS, Anwer JY, Dawood MY (1995) Bioactive oxytocin in human and baboon corpora lutea. J Endocrinol 147: 525

    PubMed  CAS  Google Scholar 

  • Khoury RH, Wang QF, Crowley WF Jr et al. (1995) Serum follistatin levels in women: Evidence against an endocrine function of ovarian follistatin. J Clin Endocrinol Metab 80: 1361

    PubMed  CAS  Google Scholar 

  • Knobil E (1980a) The neuroendocrine control of the menstrual cycle. Recent Prog Horm Res 36: 53

    PubMed  CAS  Google Scholar 

  • Knobil E (1980b) Patterns of hypophysiotropic signals and gonadotropic secretion in the rhesus monkey. Biol Reprod 24: 44

    Google Scholar 

  • Knobil E (1990) The GnRH pulse generator. Am J Obstet Gynecol 163: 1721

    PubMed  CAS  Google Scholar 

  • Knobil E, Hotchkiss J (1988) The menstrual cycle and its neuroendocrine control. In: Knobil E, Neill J (eds) The physiology of reproduction. Raven, New York, p 1971

    Google Scholar 

  • Kol S, Adashi EY (1995) Intraovarian factors regulating ovarian function. Current Opinion Obstet Gynecol 7: 209

    CAS  Google Scholar 

  • Koob GF, LeBrun C, Martinez JL Jr et al. (1985) Use of arginine Vasopressin antagonists in elucidating the mechanism of action for behavioral effects of arginine vasopressin. In: Schrier RW (ed) Vasopressin. Raven, New York, p 195

    Google Scholar 

  • Koos R (1989) Potential relevance of angiogenic factors to ovarian physiology. Sem Reprod Endocrinol 7: 29

    Google Scholar 

  • Kopp W, Blum WF, Ziegler A et al. (1998) Serum leptin and body weight in females with anorexia and bulimia nervosa. Horm Metab Res 30: 272

    PubMed  CAS  Google Scholar 

  • Lincoln DW, Fraser HM, Lincoln GA, Martin GB, McNeilly AS (1985) Hypothalamic pulse generator. Recent Prog Horm Res 41: 369

    PubMed  CAS  Google Scholar 

  • Ling N, Ying SY, Ueno N et al. (1986) Pituitary FSH is released by a heterodimer of the D-subunits from the two forms of inhibin. Nature 321: 779

    PubMed  CAS  Google Scholar 

  • Lipner H (1988) Mechanism of mammalian ovulation. In: Knobil, E, Neill J (eds) The physiology of reproduction. Raven, New York, p 447

    Google Scholar 

  • Liu BK, Burleigh BD, Ward DN (1981) Steroid and plasminogen activator production by cultured ratgranulosa cells in response to hormone treatment. Mol Cell Endocrinol 21: 63

    PubMed  CAS  Google Scholar 

  • Maas S, Jarry H, Teichmann A, Rath W, Kuhn W, Wuttke W (1992) Paracrine actions of oxytocin, prostaglandin F2α, and estradiol within the human corpus luteum. J Clin Endocrinol Metab 74: 306

    PubMed  CAS  Google Scholar 

  • Marut EL, Williams RF, Cowan BD, Lynch A, Lerner SP, Hodgen GD (1981) Pulsatile pituitary gonadotropin secretion during maturation of the dominant follicle in monkeys: estrogen positive feedback enhances the biological activity of LH. Endocrinology 109: 2270

    PubMed  CAS  Google Scholar 

  • Mason AJ, Niall HD, Seeburg PH (1986) Structure of the two human ovarian inhibins. Biochem Biophys Res Commun 135: 957

    PubMed  CAS  Google Scholar 

  • Mayo KE (1994) Inhibin and activin — molecular aspects of regulation and function. Trends Endocrinol Metab 5: 407

    PubMed  CAS  Google Scholar 

  • McGee EA, Hsueh AJ (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21: 200–214

    PubMed  CAS  Google Scholar 

  • Moghissi KS (1982) Prediction and detection of ovulation. In: Wallach EE, Kempers RD (eds) Modern trends in infertility and conception control, vol 2. Harper & Row, Philadelphia, p 224

    Google Scholar 

  • Mukhopadhyay AK, Leidenberger FA, Lichtenberg V (1979) A comparison of bioactivity and immunoactivity of luteinizing hormone stored in and released in vitro from pituitary glands of rats under various gonadal states. Endocrinology 104: 925

    PubMed  CAS  Google Scholar 

  • Neill GJD, Patton JM, Dailey RA, Tsou RC, Tindall GT (1977) Luteinizing hormone releasing hormone (LHRH) in pituitary stalk blood of rhesus monkeys: relationship to level of LH release. Endocrinology 101: 430

    PubMed  CAS  Google Scholar 

  • Norman RL, Gliessman P, Lindstrom SA, Hill J, Spies HG (1982) Reinitiation of ovulatory cycles in pituitary stalk-sectioned rhesus monkeys: evidence for a specific hypothalamic message forthe preovulatory release of luteinizing hormone. Endocrinology 111: 1874

    PubMed  CAS  Google Scholar 

  • O’Byrne KT, Knobil E (1993) Electro physiological approaches to gonadotropin releasing hormone pulse generator activity in the rhesus monkey. Human Reprod 8 (Suppl 2): 37

    Google Scholar 

  • Oktay K, Newton H, Mullan J, Gosden RG (1998) Development of human primordial follicles to antral stages in SCID/hpg mice stimulated with follicle stimulating hormone. Hum Reprod 13: 1133–1138

    PubMed  CAS  Google Scholar 

  • Oliver C, Mical RS, Porter JC (1977) Hypothalamic pituitary vasculature: Evidence for retrograde blood flow in the pituitary stalk. Endocrinology 101: 598

    PubMed  CAS  Google Scholar 

  • Page RB (1982) Pituitary blood flow. Am J Physiol 243: 427

    Google Scholar 

  • Page RB (1983) Directional pituitary blood flow: a micro-cinephotographic study. Endocrinology 112: 157

    PubMed  CAS  Google Scholar 

  • Pauerstein CJ, Eddy CA, Croxatto DH, Hess R, Siler-Khodr TM, Croxatto HB (1978) Temporal relationships of oestrogen, progesteron and luteinizing hormone levels to ovulation in women and in infrahuman primates. Am J Obstet Gynecol 130: 876

    PubMed  CAS  Google Scholar 

  • Peters H, Byskov AG, Himelstein-Braw R, Faber M (1975) Follicular growth: the basic event in the mouse and human ovary. J Reprod Fert 45: 559

    CAS  Google Scholar 

  • Peters H, McNatty KP (1980) Morphology of the ovary. In: The ovary. University of California, Los Angeles, p 12

    Google Scholar 

  • Pinilla L, Seoane LM, Gonzalez L et al. (1999) Regulation of serum leptin levels by gonadal function in rats. EurJ Endocrinol 140: 468

    CAS  Google Scholar 

  • Potashnik G, Insler V, Meizner I (1987) Frequency, sequence, and side of ovulation in women menstruating normally. Br Med J 294: 219

    CAS  Google Scholar 

  • Reichert LE, Andersen TT, Branca AA, Fletcher PW, Sluss PM (1984) FSH binding inhibitors of follicularfluid. In: Sairam MR, Atkinson LE (eds) Gonadal proteins and peptides and their biological significance. World Scientific, Singapore, p 153

    Google Scholar 

  • Reiter RJ (1993) The pineal gland: from last to first. Endocrinologist 3: 425

    Google Scholar 

  • Robertson DM, Klein R, de Vos FL et al. (1987) The isolation of Polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different from inhibin. Biochem Biophys Res Commun 149: 744

    PubMed  CAS  Google Scholar 

  • Ropert JF, Quigley ME, Yen SSC (1981) Endogenous opiates modulate pulsatile luteinizing hormone release in humans. J Clin Endocrinol Metab 52: 583

    PubMed  CAS  Google Scholar 

  • Rossmanith WG (1991) Zirkadiane und ultradiane Rhythmen in der Gonadotropinsekretion: Regulation durch ovarielle Steroide. Geburtshilfe Frauenheilkd 51: 585

    PubMed  CAS  Google Scholar 

  • Rossmanith WG (1993) Ultradian and circadian patterns in luteinizing hormone secretion during reproductive life in women. Human Reprod 8 (Suppl 2): 77

    CAS  Google Scholar 

  • Rossmanith WG, Boscher S, Kern W, Fehm HL (1993) Impact of sleep on the circadian excursion in the pituitary gonadotropin responsiveness of early follicular phase women. J Clin Endocrinol Metab 76: 330

    PubMed  CAS  Google Scholar 

  • Rossmanith WG, Lauritzen C (1991) The luteinizing hormone pulsatile secretion: diurnal excursions in normally cycling and postmenopausal women. Gynecol Endocrinol 5: 249

    PubMed  CAS  Google Scholar 

  • Rossmanith WG, Wirth U (1993) Einflüsse des Schlafes auf die Gonadotropinsekretion. Geburtshilfe Frauenheilkd 53: 735

    PubMed  CAS  Google Scholar 

  • Rothchild I (1981) The regulation of the mammalian corpus luteum. Recent Prog Horm Res 37: 183

    PubMed  CAS  Google Scholar 

  • Sahu A, Crowley WR, Kalra SP (1994) Hypothalamic neuropeptide-Y gene expression increases before the onset of the ovarian steroidinduced luteinizing hormone surge. Endocrinol 134: 1018

    CAS  Google Scholar 

  • Shoham Z, Schachter M, Loumaye E, Weissman A, MacNamee M, Insler V (1995) The luteinizing hormone surge — the final stage in ovulation induction: modern aspects of ovulation triggering. Fertil Steril 64: 237

    PubMed  CAS  Google Scholar 

  • Smith JT, Clifton DK, Steiner RA (2006) Regulation of the neuroendocrine reproductive axis by kisspeptin-GPR54 signaling. Reproduction 131: 623–630

    PubMed  CAS  Google Scholar 

  • Somunkiran A, Yavuz T, Yucel O, Ozdemir I (2007) Anti-Mullerian hormone levels during hormonal contraception in women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 134: 196–201

    PubMed  CAS  Google Scholar 

  • Speroff L, Glass RH, Kase NG (1984) Clinical gynecologic endocrinology and infertility, 3rd edn. Williams & Wilkins, Baltimore London

    Google Scholar 

  • Steinberger A, Ward DN (1988) Inhibin. In: Knobil E, Neill J (eds) The physiology of reproduction. Raven, New York, p 567

    Google Scholar 

  • Stojilkovic SS, Krsmanovic LZ, Spergel DJ, Catt KJ (1994) Gonadotropin releasing hormone neurons — intrinsic pulsatility and receptor-mediated regulation.Trends Endocrinol Metab 5: 201

    PubMed  CAS  Google Scholar 

  • Stouffer RL (1996) Corpus luteum formation and demise. In: Adashi EY, Rock JA, Rosenwaks Z (eds) Reproductive endocrinology, surgery and technology. Lippincott-Raven, Philadelphia NewYork, p 251

    Google Scholar 

  • Strickland S, Beers WH (1976) Studies on the role of plasminogen activator in ovulation. In vitro response of granulosa cells to gonadotropins, cyclic nucleotides and prostaglandins. J Biol Chem 251: 5694

    PubMed  CAS  Google Scholar 

  • Takatsu Y, Matsumoto H, Ohtaki T et al. (2001) Distribution of galaninlike peptide in the rat brain. Endocrinology 142: 1626

    PubMed  CAS  Google Scholar 

  • Tougard C, Tixier-Vidal A (1988) Lactotropes. In: Knobil E, Neill J (eds) The physiology of reproduction. Raven, NewYork, p 1305

    Google Scholar 

  • Welt CK, Chan JL, Bullen J et al. (2004) Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med 351: 987–997

    PubMed  CAS  Google Scholar 

  • Wildt L (1989) Hypothalamus. In: Bettendorf G, Breckwoldt M (Hsrg.) Reproduktionsmedizin. Fischer, Stuttgart, S. 6

    Google Scholar 

  • World Health Organization Task Force for the Determination of the Fertile Period (1980) Temporal relationship between ovulation and defined changes in the concentration of plasma estradiol-17β, luteinizing hormone and progesterone. I Probit analysis. Am J Obstet Gynecol 138: 383

    Google Scholar 

  • Wunder DM, Bersinger NA, Yared M, Kretschmer R, Birkhauser MH (2008) Statistically significant changes of antimullerian hormone and inhibin levels during the physiologic menstrual cycle in reproductive age women. Fertil Steril 89: 927–933

    PubMed  CAS  Google Scholar 

  • Ying Sy (1988) Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocr Rev 9: 267

    PubMed  CAS  Google Scholar 

  • Yu WH, Walczewska A, Karanth S, McCann SM (1997) Nitric oxide mediates leptin-induced luteinizing hormone-releasing hormone (LHRH) and LHRH and leptin-induced LH release from the pituitary gland. Endocrinology 138: 5055

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Ludwig, M. (2009). Regulation der Ovarfunktion. In: Leidenberger, F., Strowitzki, T., Ortmann, O. (eds) Klinische Endokrinologie für Frauenärzte. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89760-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89760-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89759-0

  • Online ISBN: 978-3-540-89760-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics