Skip to main content
  • 1283 Accesses

Auszug

Die meisten der derzeit am Markt verfügbaren mikrobiologischen Schnelltests basieren auf immunologischen Nachweisverfahren. Charakteristisch für alle immunologischen Nachweisverfahren.ist, dass sie auf einer hochspezifischen Antigen-Antikörper-Reaktion beruhen. Mittels dieses immunologischen Prinzips ist sowohl der qualitative Nachweis eines Analyten als auch die quantitative Bestimmung seiner Konzentration möglich. Der Testaufbau eines immunchemischen Tests kann besonders hinsichtlich der Entstehung und Auswertung der Testsignale erheblich variieren. Bewährte und für mikrobiologische Schnelltests häufig benutzte Formate sind die Partikelagglutination und die Immunchromatographie sowie die daraus hervorgegangenen Weiterentwicklungen wie beispielsweise der optische Immunoassay. Auf Basis von Nukleinsäureamplifikationstechniken (vor allem der Polymerase-Kettenreaktion, PCR) sind bislang nur wenige POC-Tests verfügbar; ihre Praktikabilität und Bewährung in der Praxis wird sich erst in den nächsten Jahren zeigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 14.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Sektion II

  1. Price CP, St John A, Hicks JM (2004) Point-of-care testing: what, why, when, and where? In: Price CP, St John A, Hicks JM (eds) Point-of care testing, 2nd edn. AACC Press, Washington, pp 3–12

    Google Scholar 

  2. Ziegler C, Göpel W (1998) Biosensor development. Curr Opinion Chem Biol 2:585–591

    Article  CAS  Google Scholar 

  3. Buerk DG (1993) Biosensors. Theory and applications. Technomic Publishing, Lancaster, PA, pp 39–61

    Google Scholar 

  4. Clark LC (1956) US Patent a2,913,386

    Google Scholar 

  5. Ghindilis AL, Atanasov P, Wilkins M, Wilkins E (1998) Immunosensors: electrochemical sensing and other engineering approaches. Biosens Bioelectron 13:113–131

    Article  PubMed  CAS  Google Scholar 

  6. Aizawa M (1994) Immunosensors for clinical analysis. Adv Clin 31:247–275

    Article  CAS  Google Scholar 

  7. López MA, Ortega F, Dominguez E, Katakis I (1998) Electrochemical immunosensor for the detection of atrazine. J Mol Recognit 11:178–181

    Article  PubMed  Google Scholar 

  8. McNeil CJ, Athey D, Renneberg R (1997) Immunosensors for clinical diagnostics. EXS 81:17–25

    PubMed  CAS  Google Scholar 

  9. Berney HC, Alderman J, Lane WA, Collins JK (1998) Development of a capacitive immunosensor: a comparison of monoclonal and polyclonal capture antibodies as the primary layer. J Mol Recognit 11:175–177

    Article  PubMed  CAS  Google Scholar 

  10. Oberhardt BJ, Dermott SC, Taylor M, Alkadi ZY, Abruzzini AF, Gresalfi NJ (1991) Dry reagent technology for rapid, convenient measurements of blood coagulation and fibrinolysis. Clin Chem 37:520–526

    PubMed  CAS  Google Scholar 

  11. Mahoney WC, Luderer AA, Brier RA, Lin JN (1996) Real-time immunodiagnostics employing optical immunobiosensors. In: Chan DW (ed) Immunoassay automation. An updated guide to systems. Academic Press, San Diego, pp 231–252

    Google Scholar 

  12. Roeseler A (1990) Infrared spectroscopic ellipsometry. Akademie-Verlag, Berlin

    Google Scholar 

  13. Liedberg B, Nylander C, Lundstrom I (1995) Biosensing with surface plasmon resonance — how it all started. Biosens Bioelectron 10:i–ix

    Article  PubMed  CAS  Google Scholar 

  14. Morgan CL, Newman DJ, Price CP (1996) Immunosensors: technology and opportunities in laboratory medicine. Clin Chem 42:193–209

    PubMed  CAS  Google Scholar 

  15. Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors — Principles and applications to clinical chemistry. Clin Chim Acta 314:1–26

    Article  PubMed  CAS  Google Scholar 

  16. Ehrmeyer SS, Laessig RH (2007) Point-of-care testing, medical error, and patient safety: a 2007 assessment. Clin Chem Lab Med 45:766–773

    Article  PubMed  CAS  Google Scholar 

  17. Laposata M, Dighe A (2007) »Pre-pre« and »post-post« analytical error: high-incidence patient safety hazards involving the clinical laboratory. Clin Chem Lab Med 45:712–719

    Article  PubMed  CAS  Google Scholar 

  18. Plebani M (2007) Errors in laboratory medicine and patient safety: the road ahead. Clin Chem Lab Med 45:700–707

    Article  PubMed  CAS  Google Scholar 

  19. Kost GJ (2001) Preventing medical errors in point-of care testing. Security, validation, performance, safeguards, and connectivity. Arch Pathol Lab Med 125:1307–1315

    PubMed  CAS  Google Scholar 

  20. Meier FA, Jones BA (2005) Point-of-care testing error. Sources and amplifiers, taxonomy, prevention strategies and detection monitors. Arch Pathol Lab Med 129:1262–1267

    PubMed  Google Scholar 

  21. Nichols JM (ed) (2003). Point-of-care testing. Performance, improvement, and evidencebased outcomes. Marcel Dekker, New York Basel

    Google Scholar 

  22. Bonini P, Plebani M, Ceriotti F, Rubboli F (2002) Errors in laboratory medicine. Clin Chem 48:691–698

    PubMed  CAS  Google Scholar 

  23. Plebani M, Carraro P (1997) Mistakes in a stat laboratory: types and frequency. Clin Chem 43:1348–1351

    PubMed  CAS  Google Scholar 

  24. Carraro P, Plebani M (2007) Errors in a stat laboratory: types and frequencies 10 years later. Clin Chem 53:1338–1342

    Article  PubMed  CAS  Google Scholar 

  25. Bundesärztekammer (2008) Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen (RiliBÄK 2008). Dt Ärztebl 105:A341–A355

    Google Scholar 

  26. Ross JW, Boone DJ (1991) Assessing the effect of mistakes in the total testing process on the quality of patient care. In: Martin L, Wagner W, Essien JDK, Institute of Critical Issues in Health Laboratory Practice (eds) DuPont Press, Minneapolis, MN, pp 64–69

    Google Scholar 

  27. Lapworth R, Teal TK (1994) Laboratory blunders revisited. Ann Clin Biochem 31:78–84

    PubMed  Google Scholar 

  28. Goldschmidt HMJ, Lent RW (1995) Gross errors and work flow analysis in the clinical laboratory. Klin Biochem Metab 3:131–140

    Google Scholar 

  29. Stahl M, Lund ED, Brandslund I (1998) Reasons for a laboratory’s inability to report results for requested analytical tests. Clin Chem 44:2195–2197

    PubMed  CAS  Google Scholar 

  30. Guder WG, Ehret W, da Fonseca-Wollheim F et al. (2002) Die Qualität diagnostischer Proben. Empfehlungen der Arbeitsgruppe Präanalytik der Deutschen Gesellschaft für Klinische Chemie und der Deutschen Gesellschaft für Laboratoriumsmedizin. J Lab Med 26:267–283

    CAS  Google Scholar 

  31. Wisser H, Bertsch T, Wisser D (2002) Preanalytical prerequisites for the quality of samples. J Lab Med 26:284–290

    CAS  Google Scholar 

  32. Guder WG, Narayanan S, Wisser H, Zawta B (2003) Samples: from the patient to the laboratory, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  33. Guder WG, Hagemann P, Wisser H, Zawta B (2007) Fokus Patientenprobe, Kompendium Präanalytik. CD-ROM, Version 1.0. BD, Heidelberg

    Google Scholar 

  34. Gressner AM, Arndt T (eds) (2007) Lexikon der Medizinischen Laboratoriumsdiagnostik, Band 1. Springer, Berlin Heidelberg New York

    Google Scholar 

  35. Burnett RW, Covington AK, Fogh-Andersen N, Külpmann WR, Maas AHJ, Müller-Plathe O (1995) Approved IFCC-Recommendations on whole blood sampling, transport and storage for simultaneous determination of pH, blood gases and electrolytes. Eur J Clin Chem Clin Biochem 33:247–253

    PubMed  CAS  Google Scholar 

  36. Di Serio F, Antonelli G, Trerotoli P, Tampoia M, Matarrese A, Pansini N (2003) Appropriateness of point-of-care testing (POCT) in an emergency department. Clin Chim Acta 333:185–189

    Article  PubMed  CAS  Google Scholar 

  37. Gruszecki AC, Hortin G, Lam J et al. (2003) Utilization, reliability, and clinical impact of point-of-care testing during critical care transport: Six years of experience. Clin Chem 49: 1017–1019

    Article  PubMed  CAS  Google Scholar 

  38. Zanner R, Moser N, Blobner M, Luppa PB (2006) Transport von Blutgasproben. Ist die Rohrpost sicher? Anaesthesist 55:1099–1104

    Article  PubMed  CAS  Google Scholar 

  39. Nichols JH (2005) Can we achieve an error-free system? Point of Care 4:139–141

    Google Scholar 

  40. Lippi G, Guidi GC, Mattiuzzi C, Plebani M (2006) Preanalytical variability: the dark side of the moon in laboratory testing. Clin Chem Lab Med 44:358

    Article  PubMed  CAS  Google Scholar 

  41. DIN ENISO 15189 (2007) Medizinische Laboratorien — Besondere Anforderungen an Qualität und Kompetenz

    Google Scholar 

  42. Dungan K, Chapman J, Braithwaite SS, Buse J (2007) Glucose measurements: Confounding issues in setting targets for inpatient management. Diabetes Care 30:403–409

    Article  PubMed  Google Scholar 

  43. Tang Z, Lee JH, Louie RF, Kost GJ (2000) Effects of different hematocrit levels on glucose measurements with handheld meters for point-of-care testing. Arch Pathol Lab Med 124: 1135–1140

    PubMed  CAS  Google Scholar 

  44. Rao LV, Jakubiak F, Sidwell JS, Winkelmann JW, Snyder ML (2005) Accuracy evaluation of a new glucometer with automated hematocrit measurement and correction. Clin Chim Acta 356:178–183

    Article  PubMed  CAS  Google Scholar 

  45. Karon BS, Griesmann L, Scott R et al. (2008) Evaluation of the impact of hematocrit and other interference on the accuracy of hospital-based glucose meters. Diabetes Technol Ther 10:111–120

    Article  PubMed  Google Scholar 

  46. Tang Z, Louie RF, Payes M, Chang KC, Kost GJ (2000) Oxygen effects on glucose measurements with a reference analyzer and three handheld meters. Diabetes Technol Ther 2: 349–362

    Article  PubMed  CAS  Google Scholar 

  47. Kost GJ, Vu HT, Inn M et al. (2000) Multicenter study of whole-blood creatinine, total carbon dioxide content, and chemistry profiling for laboratory and point-of-care testing in critical care in the United States. Crit Care Med 28:2379–2389

    Article  PubMed  CAS  Google Scholar 

  48. Tang Z, Du X, Loie RF, Kost GJ (2000) Effects of drugs on glucose measurements with handheld glucose meters and a portable glucose analyzer. Am J Clin Pathol 113:75–86

    Article  PubMed  CAS  Google Scholar 

  49. Kost GJ, Nguyen TH, Tang Z (2000) Wholeblood glucose and lactate: trilayer biosensors, drug interference, metabolism, and practice guidelines. Arch Pathold Lab Med 124: 1128–1134

    CAS  Google Scholar 

  50. Patrick L, Lynch M, O’Kane MJ (2002) Methemoglobin interferes with the Hemo Cue B-glucose Analyzer. Clin Chem 48:581–583

    Google Scholar 

  51. Asworth L, Gibb I, Alberti KG (1992) Hemo Cue: evaluation of a portable photometric system for determining glucose in whole blood. Clin Chem 38:1479–1482

    Google Scholar 

  52. Janssen W, Harff G, Caers M, Schellekens A (1998) Positive interference of icodextrin metabolites in some enzymatic glucose methods. Clin Chem 44:2379–2380

    PubMed  CAS  Google Scholar 

  53. Nobels F, Beckers F, Bailleul E, De Schrijver P, Sierens L, Van Chrombrugge P (2004) Feasibility of a quality assurance programme of bedside blood glucose testing in a hospital setting: 7 years experience. Diabet Med 21:1288–1291

    Article  PubMed  CAS  Google Scholar 

  54. Kavasak PA, Zielinski N, Li D, McNamara PJ, Adeli K (2004) Challenges of implementing point-of-care testing (POCT) glucose meters in a pediatric acute care setting. Clin Biochem 37:811–817

    Article  Google Scholar 

  55. D’Orazio P, Burnett RW, Fogh-Andersen N et al. (2005) The International Federation of Clinical Chemistry Scientific Division Working Group on Selective Electrodes and Point of Care Testing: Approved IFCC recommendation on reporting results for blood glucose (abbreviated). Clin Chem 51:1573–1576

    Article  PubMed  CAS  Google Scholar 

  56. Kristensen GBB, Christensen NG, Thue G, Sandberg S (2005) Between-lot variation of external quality assessment of glucose: clinical importance and effect on participant performance evaluation. Clin Chem 51:1632–1636

    Article  PubMed  CAS  Google Scholar 

  57. NCCLS (2002) Point-of-care blood glucose testing in acute and chronic care facilities; Approved Guideline. NCCLS document C30-A2

    Google Scholar 

  58. Bossuyt PM, Reitsma JB, Bruns DE et al. (2003) The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem 49:7–18

    Article  PubMed  CAS  Google Scholar 

  59. Bossuyt PM, Reitsma JB, Bruns DE et al. (2003) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Clin Chem 49:1–6

    Article  PubMed  CAS  Google Scholar 

  60. Mahoney J, Ellison J (2007) Assessing the quality of glucose monitor studies: a critical evaluation of published reports. Clin Chem 53:1122–1128

    Article  PubMed  CAS  Google Scholar 

  61. Mahoney JJ, Ellison JM (2007) Assessing glucose monitor performance—a standardized approach. Diabetes Technology & Therapeutics 9:545–552

    Article  CAS  Google Scholar 

  62. CLSI (2008) Guidelines for comparison of glucose methodologies that use different sample types; Proposed Guideline. CLSI document POCT6-P. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  63. St John A (2004) Benchtop instruments for point-of-care testing. In: Price CP, St John A, Hicks JM (eds) Point-of care testing, 2nd edn. AACC Press, Washington, pp 31–46

    Google Scholar 

  64. Price CP, Koller PU (1988) A multicentre study of the new Reflotron system for the measurement of urea, glucose, triacylglycerols, cholesterol, gamma-glutamyltransferase and haemoglobin. J Clin Chem Clin Biochem 26:233–250

    PubMed  CAS  Google Scholar 

  65. Schembri CT, Ostoich V, Lingane PJ, Burd TL, Buhl SN (1992) Portable simultaneous multiple analyte whole-blood analyzer for point-of-care testing. Clin Chem 38:1665–1670

    PubMed  CAS  Google Scholar 

  66. Boncheva M, Pascaleva I, Dineva D (2002) Performamce of POCT-chemistry analyzer Picollo (Abaxis) in primary health care. Gen Med 4:28–31

    Google Scholar 

  67. Kricka LJ (2004) Miniaturization technology. In: Price CP, St John A, Hicks JM (eds) Point-of care testing, 2nd edn. AACC Press, Washington, pp 71–84

    Google Scholar 

  68. Bingham D, Kendall J, Clancy M (1999) The portable laboratory: an evaluation of the accuracy and reproducibility of i-STAT. Ann Clin Biochem 36:66–71

    PubMed  CAS  Google Scholar 

  69. Thaler M, Luppa PB, Schlebusch H (2008) Die Bilirubinbestimmung—Eine aktuelle Übersicht. J Lab Med 32:1–10

    CAS  Google Scholar 

  70. Shemesh T, Rowley KG, Shephard M, Piers LS, O’Dea K (2006) Agreement between laboratory results and on-site pathology testing using Bayer DCA2000+ and Cholestech LDX point-of-care methods in remote Australian Aboriginal communities. Clin Chim Acta 367: 69–76

    Article  PubMed  CAS  Google Scholar 

  71. Boemke W, Krebs MO, Rossaint R (2004) Blutgasanalyse. Anaesthesist 53:471–492

    Article  PubMed  CAS  Google Scholar 

  72. Mikulcik P (2005) Rapidanalyse—Blutgase und mehr, 2. Aufl. Bayer Health Care, Fernwald

    Google Scholar 

  73. Skurup A, Kristensen T, Wennecke G (2008) New creatinine sensor for point-of-care testing of creatinine meets the National Kidney Disease Education Program guidelines. Clin Chem Lab Med 46:3–8

    Article  PubMed  CAS  Google Scholar 

  74. Zander R (2005) Consensus—Vereinheitlichung von Nomenklatur und Symbolen, erstellt von Firmen im Bereich POC und Test-Labor für Hämodiagnostik Qualitest 8:1–7

    Google Scholar 

  75. Suen WW, Ridley B, Blakney G, Higgins TN (2003) Comparison of lactate, bilirubin and hemoglobin F concentrations obtained by ABL 700 series blood gas analyzers with laboratory methods. Clin Biochem 36:103–107

    Article  PubMed  CAS  Google Scholar 

  76. Rolinsky B, Okorodudu AO, Kost G et al. (2005) Evaluation of total bilirubin determination in neonatal whole-blood samples by multiwavelength photometry on the ROCHE OMNI S point-of-care analyze. Point of Care 4:3–8

    Google Scholar 

  77. Arthurs O, Dey P, Pattnayak S, Bewley B, MacDonald A, Kelsall W (2007) Point-of-care measurements on a neonatal intensive care unit using the OMNI S blood gas analyzer. Point of Care 6:112–117

    Google Scholar 

  78. Grohmann K, Roser M, Rolinski B et al. (2006) Bilirubin measurement for neonates: comparison of 9 frequently used methods. Pediatr 117:1174–1183

    Article  Google Scholar 

  79. Siggaard-Andersen O, Engel K, Jørgensen K, Astrup P (1960) A micro method for determination of pH, carbon dioxide tension, base excess and standard bicarbonate in capillary blood. Scand J Clin Lab Invest 12:172–176

    Article  Google Scholar 

  80. Zander R (1995) Die klassische Blutgasanalyse (Säure-Basen-Status): Interpretation und Fehler In: Deutsche Akademie für Anästhesiologische Fortbildung (Hrsg) Refresher Course: Aktuelles Wissen für Anästhesisten. Springer, Berlin Heidelberg New York, S 27–35

    Google Scholar 

  81. NCCLS (2001) Blood gas and pH analysis and related measurements; Approved Guideline. NCCLS document C46-A (ISBN 1-56238-444-9). NCCLS, Wayne, PA

    Google Scholar 

  82. Müller-Plathe O (1987) A nomogram for the interpretation of acid-base data. J Clin Chem Clin Biochem 25:795–798

    PubMed  Google Scholar 

  83. Driscoll P, Brown T, Gwinnutt C, Wardle T (1997) A simple guide to blood gas analysis. BMJ Publishing Group, London

    Google Scholar 

  84. Boldt J, Walz G, Triem J, Suttner S, Kumle B (1998) Point-of-care (POC) measurement of coagulation after cardiac surgery. Intensive Care Med 24:1187–1193

    Article  PubMed  CAS  Google Scholar 

  85. Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA (1999) Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg 88:312–319

    Article  PubMed  CAS  Google Scholar 

  86. Avidan MS, Alcock El, Da Fonseca JH et al. Comparison of structured use of routine laboratory tests or near-patient assessment with clinical judgement in the management of bleeding after cardiac surgery. Br J Anaesth 92:178–186

    Google Scholar 

  87. Calatzis A, Heesen M, Spannagl M (2003) Patientennahe Sofortdiagnostik von Hämostaseveränderungen in der Anästhesie und intensivmedizin. Anaesthesist 52:229–237

    Article  PubMed  CAS  Google Scholar 

  88. Hattersley PG (1966) Activated coagulation time of whole blood. JAMA 196:436–440

    Article  PubMed  CAS  Google Scholar 

  89. Luddington RJ (2005) Thromboelastography. Clin Lab Haematol 27:81–90

    Article  PubMed  CAS  Google Scholar 

  90. Hartert H (1948) Blutgerinnungsstudien mit der Thrombelastographie, einem neuen. Untersuchungsverfahren. Klin Wschr 26:577–583

    Article  PubMed  CAS  Google Scholar 

  91. Hett DA, Walker D, Pilkington SN, Smith DC (1995) Sonoclot analysis. Br J Anaesth 75: 771–776

    PubMed  CAS  Google Scholar 

  92. Hayward CP, Harrison P, Cattaneo M, Ortel TL, Rao AK (2006) The platelet physiology of the SSC. J Thromb Haemost 4:312–319

    Article  PubMed  CAS  Google Scholar 

  93. Todt O, Calatzis A, Penz S, Losonczy H, Siess W (2006) Multiple electrode aggregometry: a new device to measure platelet aggregation in whole blood. Thromb Haemost 96: 781–788

    Google Scholar 

  94. Steinhubl SR, Talley JD, Braden GA et al. (2001) Point-of-care measured platelet inhibition correlates with a reduced risk of an adverse cardiac event after percutaneous coronary intervention: results of the GOLD (AU-Assessing Ultegra) multicenter study. Circulation 103:2572–2578

    PubMed  CAS  Google Scholar 

  95. Haubelt H, Anders C, Vogt A, Hoerdt P, Seyfert UT, Hellstern P (2005) Variables influencing Platelet Function Analyzer-100 closure times in healthy individuals. Br J Haematol 130: 759–767

    Article  PubMed  Google Scholar 

  96. Ferring M, Reber G, de Moerloose P, Merlani P, Diby M, Ricou B (2001) Point of care and central laboratory determinations of the aPTT are not interchangeable in surgical intensive care patients. Can J Anaesth 48:1155–1160

    PubMed  CAS  Google Scholar 

  97. Bundesärztekammer (2001) Richtlinie der Bundesärztekammer zur Qualitätssicherung quantitativer laboratoriums-medizinischer Untersuchungen vom 24. August 2001. Dtsch ärztebl 98: A2447–A2459

    Google Scholar 

  98. Ekins RP (1999) Immunoassay and other ligand assays: from isotopes to luminescence. J Clin Ligand Assay 22: 61–77

    Google Scholar 

  99. Wolfbeis OS (2000) Fiber-optic chemical sensors and biosensors. Anal Chem 72: 81R–89R

    Article  PubMed  CAS  Google Scholar 

  100. Tang Z, Louie RF, Kost GJ (2002) Principles and performance of point-of-care-testing instruments. In: Kost GJ (ed) Principles and practice of point-of-care testing. Lippincott Williams &Wilkins, Philadelphia, pp 67–92

    Google Scholar 

  101. Thomas L (2005) Labor und Diagnose, 6. Aufl. TH Books, Frankfurt/Main

    Google Scholar 

  102. Schweiger B (2006) Influenza rapid tests — advantages and limitations. J Lab Med 30: 219–215

    Google Scholar 

  103. Dunn SG, Visnich MR (2002) Home-based point-of-care testing. In: Kost GJ (ed) Principles and practice of point-of-care testing. Lippincott Williams & Wilkins, Philadelphia, pp 376–390

    Google Scholar 

  104. Lehman CA (2004) Point-of-care testing in the home via telehealth. In: Price CP, St John A, Hicks JM (eds) Point-of care testing, 2nd edn. AACC Press, Washington, pp 269–278

    Google Scholar 

  105. Hafner G, Peetz D, Dati F (2003) Patientennahe Bestimmung der Troponine zur Diagnostik akuter Koronarsyndrome. J Lab Med 27: 279–287

    CAS  Google Scholar 

  106. Peetz D, Hafner G, Lackner KJ (2005) Patientennahe Bestimmung natriuretischer Peptide. J Lab Med 29: 219–228

    CAS  Google Scholar 

  107. Sokoll LJ, Wians FH Jr, Remaley AT (2004) Rapid intra operative immunoassay of parathyroid hormone and other hormones: a new paradigm for point-of-care testing. Clin Chem 50: 1126–1135

    Article  PubMed  CAS  Google Scholar 

  108. Reinert RR (2007) Streptokokken-Schnelltests. J Lab Med 31: 280–293

    CAS  Google Scholar 

  109. Friedewald S, Finke EJ, Dobler G (2006) Patientennahe Diagnostik in Krisensituationen. J Lab Med 30: 211–221

    Google Scholar 

  110. Cals JW, Hopstaken RM, Butler CC, Hood K, Severens JL, Dinant GJ (2007) Improving management of patients with acute cough by C-reactive protein point of care testing and communication training (IMPAC3T): study protocol of a cluster randomised controlled trial. BMC Fam Pract 8: 15

    Article  PubMed  Google Scholar 

  111. Papadea C, Foster J, Grant S et al. (2002) Evaluation of the i-STAT Portable Clinical Analyzer for point-of-care blood testing in the intensive care units of a university children’s hospital. Ann Clin Lab Sci 32: 231–243

    PubMed  CAS  Google Scholar 

  112. McNulty SE, Torjman M, Grodecki W, Marr A, Schieren H (1995) A comparison of four bedside methods of hemoglobin assessment during cardiac surgery Anesth Analg 81: 1197–1202

    Article  PubMed  CAS  Google Scholar 

  113. Rechner IJ, Twigg A, Davies AF, Imong S (2002) Evaluation of the Hemo Cue compared with the Coulter STKS for measurement of neonatal haemoglobin. Arch Dis Child Fetal Neonatal Ed 86: F188–F189

    Article  PubMed  CAS  Google Scholar 

  114. Gong AK (1995) Near-patient measurements of methemoglobin, oxygen saturation, and total hemoglobin: evaluation of a new instrument for adult and neonatal intensive care. Crit Care Med 23: 193–201

    Article  PubMed  CAS  Google Scholar 

  115. Despotis GJ, Alsoufiev A, Hogue CW Jr et al. (1996) Evaluation of complete blood count results from a new, on-site hemocytometer compared with a laboratory-based hemocytometer. Crit Care Med 24: 1163–1167

    Article  PubMed  CAS  Google Scholar 

  116. Procop GW, Hartman JS, Sedor F (1997) Laboratory tests in evaluation of acute febrile illness in pediatric emergency room patients. Am J Clin Pathol 107: 114–121

    PubMed  CAS  Google Scholar 

  117. Vives-Corrons JL, Besson I, Jou JM, Gutierrez G (1996) Evaluation of the Abbott Cell-DYN 3500 hematology analyzer in university hospital. Am J Clin Pathol 105: 553–559

    PubMed  CAS  Google Scholar 

  118. Walters MC, Abelson HT (1996) Interpretation of the complete blood count. Pediatr Clin North Am 43: 599–622

    Article  PubMed  CAS  Google Scholar 

  119. Winkelman JW, Tanasijevic MJ, Wybenga DR, Otten J (1997) How fast is fast enough for clinical laboratory turnaround time? Measurement of the interval between result entry and inquiries for reports. Am J Clin Patho 108: 400–405

    CAS  Google Scholar 

  120. Benjamin JT, Baisden CR (2002) Advances in the physician office laboratory. In: Kost GJ (ed) Principles and practice of point-of-care Testing. Lippincott Williams & Wilkins, Philadelphia, pp 391–406

    Google Scholar 

  121. Whisler S, Dahlgren C (2005) Performance evaluation of the Sysmex pocH-100i automated hematology analyzer. Lab Hematol 11: 107–117

    Article  PubMed  Google Scholar 

  122. Briggs C, Kunka S, Pennaneach C, Forbes L, Machin SJ (2003) Performance evaluation of a new compact hematology analyzer, the Sysmex pocH-100i. Lab Hematol 9: 225–233

    PubMed  CAS  Google Scholar 

  123. McMahon DJ, Carpenter RL (1990) A comparison of conductivity-based hematocrit determinations with conventional laboratory methods in autologous blood transfusions. Anesth Analg 71: 541–544

    Article  PubMed  CAS  Google Scholar 

  124. Gehring H, Hornberger C, Dibbelt L et al. (2002) Accuracy of point-of-case-testing (POCT) for determining haemoglobin concentrations. Acta Anaesthesiol Scand 46: 980–986

    Article  PubMed  CAS  Google Scholar 

  125. Hinds LE, Brown CL, Clark SJ (2007) Point of care estimation of haemoglobin in neonates. Arch Dis Child Fetal Neonatal Ed 92: F378–F380

    Article  PubMed  Google Scholar 

  126. Muñoz M, Romero A, Gómez JF, Manteca A, Naveira E, Ramirez G (2005) Utility of point-of-care haemoqlobin measurement in the HemoCue-B haemoglobin for the initial diagnosis of anaemia. Clin Lab Haematol 27: 99–104

    Article  PubMed  Google Scholar 

  127. Ray JG, Post JR, Hamielec C (2002) Use of a rapid arterial blood gas analyzer to estimate blood haemoglobin concentration among critically ill adults. Crit Care 6: 72–75

    Article  PubMed  Google Scholar 

  128. von Schenck H, Falkensson M, Lundberg B (1996) Evaluation of »Hemo Cue«, a new device for determining hemoglobin. Clin Chem 32: 526–529

    Google Scholar 

  129. Agarwal R, Heinz T (2001) Bedside hemoglobinometry in hemodialysis patients: lessons from point-of-care testing. ASAIO J 47: 240–243

    Article  PubMed  CAS  Google Scholar 

  130. Morris LD, Pont A, Lewis SM (2001) Use of a new HemoCue system for measuring haemoglobin at low concentrations. Clin Lab Haematol 23: 91–96

    Article  PubMed  CAS  Google Scholar 

  131. Rippmann CE, Nett PC, Popovic D, Seifert B, Pasch T, Spahn DR (1997) Hemocue, an accurate bedside method of hemoglobin measurement? J Clin Monit 13: 373–277

    Article  PubMed  CAS  Google Scholar 

  132. Jahr JS, Lurie F, Driessen B, Davis JA, Gosselin R, Gunther RA (2002) The Hem oCue,a point of care B-hemoglobin photometer, measures haemoglobin concentrations accurately when mixed in vitro with canine plasma and three hemoglobin-based oxygen carriers (HBOC). Can J Anaesth 49: 243–248

    PubMed  Google Scholar 

  133. Gong AK, Backenstose B (1999) Evaluation of the HB-Quick: a portable hemoglobinometer. J Clin Monit Comput 15: 171–177

    Article  PubMed  CAS  Google Scholar 

  134. Despotis GJ, Saleem R, Bigham M, Barnes P (2000) Clinical evaluation of a new, point-of-care hemocytometer. Crit Care Med 28: 1185–1190

    Article  PubMed  CAS  Google Scholar 

  135. Conway AM, Hinchliffe RF, Earland J, Anderson LM (1998) Measurement of haemoglobin using single drops of skin puncture blood: is precision acceptable? J Clin Pathol 51: 48–50

    Article  Google Scholar 

  136. Leonard M, Chessall M, Manning D (1997) The use of a Hemocue blood glucose analyser in a neonatal unit. Ann Clin Biochem 34: 287–290

    PubMed  Google Scholar 

  137. van Solinge WW, Huisman A (2004) Point-of-care testing in haematology. In: Price CP, St John A, Hicks JM (eds) Point-of care testing, 2nd edn. AACC Press, Washington, pp 415–420

    Google Scholar 

  138. Lardi AM, Hirst C, Mortimer AJ, McCollum CN (1998) Evaluation of the HemoCue for measuring intra-operative haemoglobin concen trations: a comparison with the Coulter Max-M. Anaesthesia 53: 349–352

    Article  PubMed  CAS  Google Scholar 

  139. Holloway PAH (2002) Point-of-care testing in intensive care. In: Kost GJ (ed) Principles and practice of point-of-case Testing. Lippincott Wiliams & Wilkins, Philadelphia, pp 133–156

    Google Scholar 

  140. Despotis GJ, Joist JH, Goodnough LT (1997) Monitoring of hemostasis in cardiac surgical patients: impact of point-of-care testing on blood loss and transfusion outcomes. Clin Chem 43: 1684–1696

    PubMed  CAS  Google Scholar 

  141. Nuttall GA, Oliver WC, Santrach PJ et al. (2001) Efficacy of a simple intraoperative transfusion algorithm for nonerythrocyte component utilization after cardiopulmonary bypass. Anesthesiology 94: 773–781

    Article  PubMed  CAS  Google Scholar 

  142. Staudinger T, Locker GJ, Frass M (1996) Management of acquired coagulation disorders in emergency and intensive-care medicine. Semin Thromb Hemost 22: 93–104

    Article  PubMed  CAS  Google Scholar 

  143. Widness JA, Kulhavy JC, Johnson KJ et al. Clinical performance of an in-line point-of-care monitor in neonates. Pediatrics 106: 497–504

    Google Scholar 

  144. Alex CP, Manto JC, Garland JS (1998) Clinical utility of a bedside blood analyzer for measuring blood chemistry values in neonates. J Perinatol 18: 45–48

    PubMed  CAS  Google Scholar 

  145. Weiss M, Dullenkopf A, Moehrlen U (2004) Evaluation of an improved blood-conserving POCT sampling system. Clin Biochem 37: 977–984

    Article  PubMed  CAS  Google Scholar 

  146. Lewis SM, Osei-Bimpong A, Bradshaw A (2004) Measurement of haemoglobin as a screening test in general practice. J Med Screen 11: 103–105

    Article  PubMed  CAS  Google Scholar 

  147. Yasuda S, Itoh S, Isobe K et al. (2003) New transcutaneous jaundice device with two optical paths. J Perinat Med 31: 81–88

    Article  PubMed  Google Scholar 

  148. Maisels MJ, Ostrea EM, Touch S et al. (2004) Evaluation of a new transcutaneous bilirubinometer. Pediatr 113: 1628–1635

    Article  Google Scholar 

  149. Bhutani VK, Gourley GR, Adler S, Kreamer B, Dalin C, Johnson LH (2000) Noninvasive measurement of total bilirubin in a multiracial predischarge new born population to assess the risk of severe hyperbilirubinemia. Pediatr 106: e 17. http://www.pediatrics.org/cgi/content/full/106/2/e17

    Article  Google Scholar 

  150. Rubaltelli FR, Gourley GR, Loskamp N et al. (2001) Transcutaneous bilirubin measurement: a multicenter evaluation of a new device. Pediatr 107: 1264–1271

    Article  CAS  Google Scholar 

  151. Willems WA, van den Berg LM, de Wit H, Molendijk A (2004) Transcutaneous bilirubinometry with the BiliCheck in very premature newborns. J Maternal-Fetal Neo nat Med 16: 209–214

    CAS  Google Scholar 

  152. Tan KL, Dong F (2003) Transcutaneous bilirubinometry during and after phototherapy. Acta Paediatr 92: 327–331

    Article  PubMed  CAS  Google Scholar 

  153. Turnheer R (2004) Pulsoximetrie. Schweiz Med Forum 4: 1218–1223

    Google Scholar 

  154. Zur B, Hornung A, Breuer J et al. (2008) A novel hemoglobin, Bonn, causes falsely decreased oxygen saturation measurements in pulse oxymetry. Clin Chem 54: 594–596

    Article  PubMed  CAS  Google Scholar 

  155. Severinghaus JW, Honda Y (1998) Blood gas analysis and critical care medicine. Am J Respir Crit Care Med 4: S114–S122

    Google Scholar 

  156. Stücker M, Memmel U, Altmeyer P (2000) Transkutane Sauerstoffpartial druck-und Kohlendioxidpartial druckmessung — Verfahrenstechnik und Anwendungsgebiete. Phlebologe 9: 81–91

    Google Scholar 

  157. McMurdy JW, Jay GD, Suner S, Crawford G (2008) Noninvasive optical, electrical, and acoustic methods of total hemoglobin determination. Clin Chem 54: 264–272

    Article  PubMed  CAS  Google Scholar 

  158. Guder WG Narayanan S, Wisser H, Zawta B (1999) Proben zwischen Patient und Labor — Der Einfluss präanlytischer Faktoren auf die Qualität von Laboratoriumsbefunden. GIT, Darmstadt, S 28–30

    Google Scholar 

  159. Heller JF (1852) Unsere heutige Aufgabe. Archiv für physiologische und pathologische Chemie und Mikroskopie (Neue Folge) 5: 1–6

    Google Scholar 

  160. Dörner K (1998) Klinische Chemie und Hämatologie. Enke, Stuttgart

    Google Scholar 

  161. Weber MH (1990) Proteinurie und Hämaturie: Nichtinvasive Diagnostik renaler Leitsymptome. Dtsch Ärztebl 87: C1442–C1448

    Google Scholar 

  162. Haas M, Besenthal I, Renn W, Schmülling R, Eggstein M (1994) Mikroalbuminuirie-Screening: Eine vergleichende Untersuchung von drei Schnelltests gegen ein nephelometrisches Verfahren. Diab Stoffw 3: 61–65

    Google Scholar 

  163. Berg B (1986) Ascorbate interference in the estimation of urinary glucose by test strips. J Clin Chem Clin Biochem 24: 89–96

    PubMed  CAS  Google Scholar 

  164. Heinemann L, Asche W, Withold W, Berger M (1994) Quantitative Beziehung zwischen der mit vier Schnelltests bestimmten Ketonurie und der gleichzeitig vorliegenden Ketonämie. Diab Stoffw 3: 339–342

    Google Scholar 

  165. Jendrassik L, Gróf P (1938) Vereinfachte photometrische Methoden zur Bestimmung des Bilirubins. Biochem Ztschr 297: 81–89

    CAS  Google Scholar 

  166. Kutter D, van Oudheusden APM, Eisenberg K, Hennecke A, Helbing R, Busch EW (1973) Die Brauchbarkeit eines neuen Teststreifens zum Nachweis von Urobilinogen im Harn. Dtsch Med Wschr 98: 112–118

    PubMed  CAS  Google Scholar 

  167. ECLM (2000) European Urinalysis Guidelines: Summary. Scand. J. Clin Lab Invest 60, Supplement 231: 1–96

    Google Scholar 

  168. Sommerkamp H, Klett H (1966) Die Harnpufferanalyse in der Diagnostik und Therapie metabolischer Störungen des Säure-Basen-Haushalts. Dtsch Med Wschr 91: 403–408

    CAS  Google Scholar 

  169. Braun JS, Straube W (1975) Die Diagnostik der Mikrohämaturie mit einem neuen Teststreifen. Ein Vergleich mit mikroskopischen Untersuchungsmethoden. Dtsch Med Wschr 100: 87–89

    PubMed  CAS  Google Scholar 

  170. Kutter D, Figueiredo G, Klemmer L (1987) Chemical detection of leukocytes in urine by means of a new multiple test strip. J Clin Chem Biochem 25: 91–94

    CAS  Google Scholar 

  171. Kutter D (1998) A chemical test strip to determine low concentrations of albumin and creatinine in urine. Laboratory Medicine 29: 12

    Google Scholar 

  172. Dorizzi RM, Caputo M (1998) Measurement of urine relative density using refractometer and reagent stripes. Clin Chem Lab Med 36: 925–928

    Article  PubMed  CAS  Google Scholar 

  173. O’Connor JF, Birkin S, Lustbader JW, Krichevsky A, Chen Y, Canfield RE (1994) Recent advances in the chemistry and immunochemistry of human chorionic gonadotropin: impact of clinical measurements. Endocr Rev 15: 650–683

    Article  Google Scholar 

  174. Payne WR Jr, Marshall DL, Shockley RK et al. (1988) Clinical laboratory applications of monoclonal antibodies. Clin Microbiol Rev 1: 313–329

    PubMed  Google Scholar 

  175. Brandt CD, Arndt CW, Evans GL et al. (1987) Evaluation of a latex test for rotavirus detection. J Clin Microbiol 25: 8000–8002.

    Google Scholar 

  176. Grubbauer HM, Dornbusch HJ, Zobel G et al. (1988) Assessment of a commonly available latex particle agglutination test in rapid, bacteriologic cerebrospinal fluid diagnosis, Padiatr Padol 23: 39–45

    PubMed  CAS  Google Scholar 

  177. Kohli E, Pothier P, Denis F et al. (1989) Multicentre evaluation of a new commercial latex agglutination test using a monoclonal antibody for rotavirus detection. Eur J Clin Microbiol Infect Dis 8: 251–253

    Article  PubMed  CAS  Google Scholar 

  178. Klewitz TM (2005) Entwicklung eines quantitativen Lateral-Flow-Immunoassays zum Nachweis von Analyten in geringsten Konz entrationen. Inauguraldissertation, Universität Hannover

    Google Scholar 

  179. Inverness medical (2006) Bio Star OIA GC. An enhanced optical immunoassay for the rapid detection of Neisseria gonorrhoeae from female endocervical swabs and male urine specimens. Produktbeilage, Revision 02. Inverness Medical Innovations, Waltham, MA, USA

    Google Scholar 

  180. van Hal SJ, Starck D, Lockwood B, Marriott D, Harkness J (2007) Methicillin-resistant Staphylococcus aureus (MRSA) detection: comparison of two molecular methods (IDI-MRSA PCR assay and Geno Type MRSA direct PCR assay) with three selective MRSA agars (MRSA ID, MRSASelect and CHROMagar MRSA) for use with infection-control swabs. J Clin Microbiol 45: 2486–2490

    Article  PubMed  CAS  Google Scholar 

  181. Cepheid (2007) GeneXpert. The world’s only fully-integrated real-time PCR system. Produktbroschüre. Cepheid, Sunnyvale, CF, USA

    Google Scholar 

  182. Cepheid (2007) Xpert MRSA. Redefining active MRSA surveillance testing. Produktbroschüre, Cepheid, Sunnyvale, CF, USA

    Google Scholar 

  183. Wernitz MH, Swidsinski S, Weist K et al. (2005) Effectiveness of a hospital-wide selective screening programme for methicillin-resistant Staphylococcus aureus (MRSA) carriers at hospital admission to prevent hospital-acquired MRSA infections. Clin Microbiol Infect 11: 457–465

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Stürenburg, E. (2008). Sonstige Verfahren. In: Luppa, P.B., Schlebusch, H. (eds) POCT — Patientennahe Labordiagnostik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79152-2_14

Download citation

Publish with us

Policies and ethics