Skip to main content

Inhalational Anaesthetics and Cardioprotection

  • Chapter
Modern Anesthetics

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 182))

Abstract

The heart has a strong endogenous cardioprotection mechanism that can be triggered by short periods of ischaemia (like during angina) and protects the myocardium during a subsequent ischaemic event (like during a myocardial infarction). This important mechanism, called ischaemic pre-conditioning, has been extensively investigated, but the practical relevance of an intervention by inducing ischaemia is mainly limited to experimental situations. Research that is more recent has shown that many volatile anaesthetics can induce a similar cardioprotection mechanism, which would be clinically more relevant than inducing cardioprotection by ischaemia. In the last few decades, several laboratory investigations have shown that exposure to inhalational anaesthetics leads to a variety of changes in the protein structure of the myocardium. By a functional blockade of these modified (i.e. activated) target enzymes, it was demonstrated that some of these changes in protein structure and distribution can mediate cardioprotection by anaesthetic pre-conditioning. This chapter gives an overview of our current understanding of the signal transduction of this phenomenon. In addition to an intervention before ischaemia (i.e. pre-conditioning), there are two more time windows when a substance may interact with the ischaemia-reperfusion process and might modify the extent of injury: (1) during ischaemia or (2) after ischaemia (i.e. during reperfusion) (postconditioning). In animal experiments, the volatile anaesthetics also interact with these mechanisms (especially immediately after ischaemia), i.e. by post-conditioning. Since ischaemia-reperfusion of the heart routinely occurs in a variety of clinical situations such as during transplant surgery, coronary artery bypass grafting, valve repair or vascular surgery, anaesthetic-induced cardioprotection might be a promising option to protect the myocardium in clinical situations. Initial studies now confirm an effect on surrogate outcome parameters such as length of ICU or in-hospital stay or post-ischaemic troponin release. In this chapter, we will summarize our current understanding of the three mechanisms of anaesthetic cardioprotection exerted by inhalational anaesthetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weber, N.C., Schlack, W. (2008). Inhalational Anaesthetics and Cardioprotection. In: Schüttler, J., Schwilden, H. (eds) Modern Anesthetics. Handbook of Experimental Pharmacology, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74806-9_9

Download citation

Publish with us

Policies and ethics