Skip to main content

How to Collect Ticks and Interpret These Collections

  • Chapter
  • First Online:
Ticks of Europe and North Africa

Abstract

To date, almost 900 species of ticks have been described. The three existing families consist of the Argasidae (soft ticks; ca. 191 species), the Ixodidae (hard ticks; ca. 702 species) and the Nuttalliellidae with only one species (Nuttalliella namaqua). They transmit more pathogen species to humans, livestock, companion animals and wildlife than any other blood-sucking arthropod species. However, research focuses predominantly on the most abundant tick species, such as Ixodes ricinus in Europe, Ixodes scapularis in the USA or Rhipicephalus sanguineus s.l. worldwide, and their role in the transmission of diseases. For most other less abundant tick species, information on the biology, ecology and vector capability is rare, as described in the present book. However, tick species that are not a direct threat to humans or animals can still be important for the maintenance of enzootic cycles for different pathogens. Therefore, to understand the eco-epidemiology of various diseases, it is essential to study the interactions between ticks, their hosts, the pathogens and their biotic and abiotic environment. In order to achieve such an understanding, collecting ticks is necessary. The type of collection, as well as the quality of results, depends on the host-seeking behaviour, the life history stages and the natural habitat of the ticks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Apanaskevich DA, Walker JB, Heyne H, Bezuidenhout JD, Horak IG (2013) First description of the immature stages and redescription of the adults of Cosmiomma hippopotamensis (Acari: Ixodidae) with notes on its bionomics. J Med Entomol 50:709–722

    Google Scholar 

  • Ardia DR (2005) Cross-fostering reveals an effect of spleen size and nest temperatures on immune responses in nestling European starlings. Oecologia 327–334. https://dx.doi.org/10.1007/s00442-005-0120-6

  • Beati L, Nava S, Burkman EJ, Barros-Battesti DM, Labruna MB, Guglielmone AA, Cáceres AG, Guzmán-Cornejo CM, León R, Durden LA, Faccini JL (2013) Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation. BMC Evol Biol 13:267

    Google Scholar 

  • Boardman ET (1944) Methods for collecting ticks for study and delineation. J Parasitol 30:57–59

    Article  Google Scholar 

  • Bryson NR, Horak IG, Venter EH, Yunker CE (2000) Collection of free-living nymphs and adults of Amblyomma hebraeum (Acari: Ixodidae) with pheromone/carbon dioxide traps at 5 different ecological sites in heartwater endemic regions of South Africa. Exp Appl Acarol 24:971–982. https://dx.doi.org/10.1023/A:1010639113793

  • Butler JF, Gibbs EPJ (1984) Distribution of potential soft tick vectors of African swine fever in the Caribbean region (Acari: Argasidae). Prev Vet Med 2:63–70. https://dx.doi.org/10.1016/0167-5877(84)90049-7

  • Caiado JM, Boinas FS, Melo MA, Louza AC (1990) The use of carbon dioxide insect traps for the collection of Ornithodoros erraticus on African swine fever-infected farms. Prev Vet Med 8:55–59

    Article  Google Scholar 

  • Carpi G, Bertolotti L, Rosati S, Rizzoli A (2009) Prevalence and genetic variability of tick-borne encephalitis virus in host-seeking Ixodes ricinus in northern Italy. J Gen Virol 90:2877–2883

    Article  CAS  PubMed  Google Scholar 

  • Clayton DH, Walther BA (1997) Appendix C: Collection and quantification of arthropod parasites of birds. In: Clayton DH, Moore J (eds) Host-parasite evolution: general principles and avian models. Oxford University Press, Oxford, pp 419–440

    Google Scholar 

  • Corriveau M, Uppstrom K, Klompen H (2010) Effect of eight storage modes on DNA preservation. In: Trends in Acarology, Proceedings of the 12th International Congress. pp 553–556

    Google Scholar 

  • Corwin D, Clifford CM, Keirans JE (1979) An improved method for cleaning and preparing ticks for examination with the scanning electron microscope. J Med Entomol 16:352–353

    Google Scholar 

  • Cruickshank RH (2002) Molecular markers for the phylogenetics of mites and ticks. Syst Appl Acarol 7:3–14

    Article  Google Scholar 

  • Degenhardt WG, Degenhardt PB (1965) The host-parasite relationship between Elaphe subocularis (Reptilia: Colubridae) and Aponomma elaphensis (Acarina: Ixodidae). Southwest Nat 1:167–178

    Google Scholar 

  • De La Cruz J, Estrada-Peña A (1992) A simple, new improved method for preparing ticks for examination by scanning electron microscopy. Acarologia 33:321–323

    Google Scholar 

  • Dixon B, Petney TN, Andrews RH (2000) A simplified method of cleaning ixodid ticks for microscopy. J Microsc 197:317–319

    Google Scholar 

  • Durden LA (2006) Taxonomy, host associations, life cycles and vectorial importance of ticks parasitizing small mammals. In: Morand S, Krasnov BR, Poulin R (eds) Micromammals and macroparasites. From evolutionary ecology to management. Springer Japan, Tokyo, pp 91–102. https://dx.doi.org/10.1007/978-4-431-36025-4

  • Estrada-Peña A, Gray JS, Kahl O, Lane RS, Nijhoff AM (2013) Research on the ecology of ticks and tick-borne pathogens—methodological principles and caveats. Front Cell Infect Microbiol 3:29

    Google Scholar 

  • Estrada-Peña A, Nava S, Petney T, (2014) Description of all the stages of Ixodes inopinatus n. sp. (Acari: Ixodidae). Ticks Tick Borne Dis 5:734–743. https://dx.doi.org/10.1016/j.ttbdis.2014.05.003

  • Estrada-Peña A, Pfäffle M, Baneth G, Kleinerman G, Petney TN (2017) Ixodoidea of the Western Palearctic: a review of available literature for identification of species. Ticks Tick Borne Dis 8(4):512–525

    Google Scholar 

  • Falco RC, Fish D (1991) Horizontal movement of adult Ixodes dammini (Acari: Ixodidae) attracted to CO2-baited traps. J Med Entomol 28:726–729. https://dx.doi.org/10.1093/jmedent/28.5.726

  • Falco RC, Fish D (1992) A comparison of methods for sampling the deer tick, Ixodes dammini, in a Lyme disease endemic area. Exp Appl Acarol 14:165–173

    Google Scholar 

  • Garcia R (1962) Carbon dioxide as an attachment for certain ticks (Acarina: Argasidae and Ixodidae). Ann Entomol Soc Am 55:605–606

    Article  CAS  Google Scholar 

  • Ginsberg HS, Ewing CP (1989) Comparison of flagging, walking, trapping, and collecting from hosts as sampling methods for northern deer ticks, Ixodes dammini, and lone-star ticks, Amblyomma americanum (Acari: Ixodidae). Exp Appl Acarol 7:313–322. https://dx.doi.org/10.1007/BF01197925

  • Gray JS, Lohan G (1982) The development of a sampling method for the tick Ixodes ricinus and its use in a redwater fever area. Ann Appl Biol 101:421–427. https://dx.doi.org/10.1111/j.1744-7348.1982.tb00842.x

  • Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Peña A, Horak IG, Shao R, Barker SC (2010) The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: a list of valid species names. Zootaxa 2528:1–28

    Google Scholar 

  • Keirans JE, Clifford CM, Corwin D (1976) Ixodes sigelos, n. sp.(Acarina: Ixodidae), a parasite of rodents in Chile, with a method for preparing ticks for examination by scanning electron microscopy. Acarologia 18:217–225

    Google Scholar 

  • MacLeod J (1975) Apparent host selection by some African tick species. Oecologia 19:359–370

    Google Scholar 

  • MacIvor KM, Horak IG, Holton KC, Petney TN (1987) A comparison of live and destructive sampling methods of determining the size of parasitic tick populations. Expt Appl Acarol 3:131–143

    Article  CAS  Google Scholar 

  • Melik W, Nilsson AS, Johansson M (2007) Detection strategies of tick-borne encephalitis virus in Swedish Ixodes ricinus reveal evolutionary characteristics of emerging tick-borne flaviviruses. Adv Virol 152:1027–1034

    Google Scholar 

  • Miles VI (1968) A carbon dioxide bait trap for collecting ticks and fleas from animal burrows. J Med Entomol 5:491–495. https://dx.doi.org/10.1093/jmedent/5.4.491

  • Mtambo J, Van Bortel W, Madder M, Roelants P, Backeljau T (2006) Comparison of preservation methods of Rhipicephalus appendiculatus (Acari: Ixodidae) for reliable DNA amplification by PCR. Exp Appl Acarol 38:189–199. https://dx.doi.org/10.1007/s10493-006-0004-4

  • Mumcuoglu KY, Banet-Noach C, Malkinson M, Shalom U, Galun R (2005) Argasid ticks as possible vectors of West Nile virus in Israel. Vector Borne Zoonotic Dis 5:65–71

    Article  PubMed  Google Scholar 

  • Nava S, Gerardi M, Szabó MP, Mastropaolo M, Martins TF, Labruna MB, Beati L, Estrada-Peña A, Guglielmone AA (2016) Different lines of evidence used to delimit species in ticks: a study of the South American populations of Amblyomma parvum (Acari: Ixodidae). Ticks Tick Borne Dis. 7:1168–1179

    Article  PubMed  Google Scholar 

  • Needham GR, Teel PD (1991) Off-host physiological ecology of ixodid ticks. Annu Rev Entomol 36:659–681. https://dx.doi.org/10.1146/annurev.ento.36.1.659

  • Nelder MP, Reeves WK (2005) Ectoparasites of road-killed vertebrates in northwestern South Carolina, USA. Vet Parasitol Parasitol 129:313–322

    Article  Google Scholar 

  • Niebuhr CN, Breeden JB, Lambert BD, Eyres AI, Haefele HJ, Kattes DH (2013) Off-host collection methods of the Otobius megnini (Acari: Argasidae). J Med Entomol 50:994–998. https://dx.doi.org/10.1603/ME13020

    Article  CAS  PubMed  Google Scholar 

  • Oakwood M, Spratt DM (2000) Parasites of the northern quoll, Dasyurus hallucatus (Marsupialia: Dasyuridae) in tropical savanna, Northern Territory. Aus J Zool 48:79–90

    Google Scholar 

  • Petney TN, van Ark H, Spickett AM (1990) On sampling tick populations: the problem of overdispersion. Onderstepoort J Vet Res 57:123–127

    CAS  PubMed  Google Scholar 

  • Petry WK, Foré SA, Fielden LJ, Kim HJ (2010) A quantitative comparison of two sample methods for collecting Amblyomma americanum and Dermacentor variabilis (Acari: Ixodidae) in Missouri. Exp Appl Acarol 52:427–438

    Article  PubMed  Google Scholar 

  • Pfäffle M, Littwin N, Petney T (2015) Host preferences of immature Dermacentor reticulatus (Acari: Ixodidae) in a forest habitat in Germany. Ticks Tick Borne Dis 6:508–515. https://dx.doi.org/10.1016/j.ttbdis.2015.04.003

    Article  PubMed  Google Scholar 

  • Pfäffle M, Petney T, Skuballa J, Taraschewski H (2011) Comparative population dynamics of a generalist (Ixodes ricinus) and specialist tick (I. hexagonus) species from European hedgehogs. Exp Appl Acarol 54:151–164. https://dx.doi.org/10.1007/s10493-011-9432-x

    Article  PubMed  Google Scholar 

  • Rupp MB (1990) An abbreviated method for preparing Ixodes damini ticks for scanning electron microscopy observation. Microsc Res Tech 15:99–100

    Google Scholar 

  • Schulze TL, Jordan RA, Dolan MC (2011) Experimental use of two standard tick collection methods to evaluate the relative effectiveness of several plant-derived and synthetic repellents against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae). J Econ Entomol 104:2062–2067. https://dx.doi.org/10.1603/EC10421

    Article  CAS  PubMed  Google Scholar 

  • Skerratt LF (1998) Diseases and parasites of the common wombat Vombatus ursinus in the Healesville area of Victoria. In: Wells RT, Pridmore PA (eds) Wombats. Surrey Beatty & Sons, Chipping Norton, NSW, Australia, pp 317–328

    Google Scholar 

  • Skuballa J, Petney T, Pfäffle M, Taraschewski H (2010) Molecular detection of Anaplasma phagocytophilum in the European hedgehog (Erinaceus europaeus) and its ticks. Vector Borne Zoonotic Dis 10:1055–1057. https://dx.doi.org/10.1089/vbz.2009.0150

    Article  PubMed  Google Scholar 

  • Terassini FA, Barbieri FS, Albuquerque S, Szabó MPJ, Camargo LMA, Labruna MB (2010) Comparison of two methods for collecting free-living ticks in the Amazonian forest. Ticks Tick Borne Dis 1:194–196. https://dx.doi.org/10.1016/j.ttbdis.2010.08.002

    Article  PubMed  Google Scholar 

  • Van Dyk PJ, McKenzie AA (1992) An evaluation of the effectivity of the scrub technique in quantitative ectoparasite ecology. Expt Appl Acarol 15:271–283

    Article  Google Scholar 

  • Wilson JG, Kinzer DR, Sauer JR, Hair JA (1972) Chemo-attraction in the lone star tick (Acarina: Ixodidae): I. Response of different developmental stages to carbon dioxide administered via traps. J Med Entomol 9:245–252. doi:10.1093/jmedent/9.3.245

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Petney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petney, T.N., Pfäffle, M.P., Sprong, H., Mihalca, A.D., Estrada-Peña, A. (2017). How to Collect Ticks and Interpret These Collections. In: Estrada-Peña, A., Mihalca, A., Petney, T. (eds) Ticks of Europe and North Africa. Springer, Cham. https://doi.org/10.1007/978-3-319-63760-0_2

Download citation

Publish with us

Policies and ethics