Skip to main content

Uranium and the Central Nervous System: What Should We Learn from Recent New Tools and Findings?

  • Chapter
  • First Online:
Neurotoxicity of Metals

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 18))

Abstract

Increasing industrial and military use of uranium has led to environmental pollution, which may result in uranium reaching the brain and causing cerebral dysfunction. A recent literature review has discussed data published over the last 10 years on uranium and its effects on brain function (Dinocourt C, Legrand M, Dublineau I, et al., Toxicology 337:58–71, 2015). New models of uranium exposure during neonatal brain development and the emergence of new technologies (omics and epigenetics) are of value in identifying new specific targets of uranium. Here we review the latest studies of neurogenesis, epigenetics, and metabolic dysfunctions and the identification of new biomarkers used to establish potential pathophysiological states of neurodevelopmental and neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou-Donia MB, Dechkovskaia AM, Goldstein LB, et al. Uranyl acetate-induced sensorimotor deficit and increased nitric oxide generation in the central nervous system in rats. Pharmacol Biochem Behav. 2002;72:881–90.

    Article  CAS  PubMed  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Uranium. Atlanta: U.S. Department of Health and Human Services, Public Health Service; 2013.

    Google Scholar 

  • Albina ML, Bellés M, Linares V, et al. Restraint stress does not enhance the uranium-induced developmental and behavioral effects in the offspring of uranium-exposed male rats. Toxicology. 2005;215:69–79.

    Article  CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol. 1990;301(3):365–81.

    Article  CAS  PubMed  Google Scholar 

  • Barillet S, Adam C, Palluel O, et al. Bioaccumulation, oxidative stress, and neurotoxicity in Danio rerio exposed to different isotopic compositions of uranium. Environ Toxicol Chem. 2007;26:497–505.

    Article  CAS  PubMed  Google Scholar 

  • Barillet S, Adam-Guillermin C, Palluel O, et al. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure. Environ Pollut. 2011;159:495–502.

    Article  CAS  PubMed  Google Scholar 

  • Bayer SA. Development of the hippocampal region in the rat. II. Morphogenesis during embryonic and early postnatal life. J Comp Neurol. 1980;190(1):115–34.

    Article  CAS  PubMed  Google Scholar 

  • Bensoussan H, Grancolas L, Dhieux-Lestaevel B, et al. Heavy metal uranium affects the brain cholinergic system in rat following sub-chronic and chronic exposure. Toxicology. 2009;261:59–67.

    Article  CAS  PubMed  Google Scholar 

  • Bleise A, Danesi PR, Burkart W. Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact. 2003;64:93–112.

    Article  CAS  PubMed  Google Scholar 

  • Briner W, Abboud B. Behavior of juvenile mice chronically exposed to depleted uranium. In: Khassanova L, Collery P, Maymard I, Khassanova Z, Etienne JC, editors. Metal ions in biology and medicine. Paris: John Libby Eurotext; 2002. p. 353–6.

    Google Scholar 

  • Briner W, Davis D. Lipid oxidation and behavior are correlated in depleted uranium exposed mice. In: Khassanova L, Collery P, Maymard I, Khassanova Z, Etienne JC, editors. Metal ions in biology and medicine. Paris: John Libby Eurotext; 2002. p. 59–63.

    Google Scholar 

  • Briner W, Murray J. Effects of short-term and long-term depleted uranium exposure on open-field behavior and brain lipid oxidation in rats. Neurotoxicol Teratol. 2005;27:135–44.

    Article  CAS  PubMed  Google Scholar 

  • Bussy C, Lestaevel P, Dhieux B, et al. Chronic ingestion of uranyl nitrate perturbs acetylcholinesterase activity and monoamine metabolism in male rat brain. Neurotoxicology. 2006;27:245–52.

    Article  CAS  PubMed  Google Scholar 

  • Ceccatelli S, Bose R, Edoff K, et al. Long-lasting neurotoxic effects of exposure to methylmercury during development. J Intern Med. 2013;273(5):490–7.

    Article  CAS  PubMed  Google Scholar 

  • Cheng TF, Choudhuri S, Muldoon-Jacobs K. Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol. 2012;32:643–53.

    Article  CAS  PubMed  Google Scholar 

  • Dinocourt C, Stefani J et al. Reduced carbachol-induced beta/gamma oscillations in CA3 region of hippocampus after post-natal contamination of uranium in adult rat. Meeting abstract, Neurosciences, Washington, DC. 2014. November 2014.

    Google Scholar 

  • Dinocourt C, Legrand M, Dublineau I, et al. The neurotoxicology of uranium. Toxicology. 2015;337:58–71.

    Article  CAS  PubMed  Google Scholar 

  • Dinocourt C, et al. Chronic exposure to uranium from gestation: Effects on behavior and neurogenesis in adulthood. Int J Environ Res Public Health. 2017;14(5):536.

    Article  PubMed Central  Google Scholar 

  • Domingo JL. Reproductive and developmental toxicity of natural and depleted uranium: a review. Reprod Toxicol. 2001;15:603–9.

    Article  CAS  PubMed  Google Scholar 

  • Dublineau I, Souidi M, Gueguen Y, et al. Unexpected lack of deleterious effects of uranium on physiological systems following a chronic oral intake in adult rat. Biomed Res Int. 2014; doi:10.1155/2014/181989.

  • Elmhiri G, Gloaguen C, Kereselidze D, et al. Multigenerational effects of chronic low-dose natural uranium contamination: epigenetic inheritance of methylation signature. Toxicol Lett. 2016;259S:S73–S247. http://dx.doi.org/10.1016/j.toxlet.2016.07.293

  • Franco R, Schoneveld O, Georgakilas AG, et al. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. 2008;266(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  • Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17(5):667–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Kumar A, Pandey BN, et al. Acute exposure of uranyl nitrate causes lipid peroxidation and histopathological damage in brain and bone of Wistar rat. J Environ Pathol Toxicol Oncol. 2007;26:255–61.

    Article  CAS  PubMed  Google Scholar 

  • Gombeau K, Pereira S, Ravanat JL, et al. Depleted uranium induces sex- and tissue-specific methylation patterns in adult zebrafish. J Environ Radioact. 2016;154:25–33.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Riano C, Garcia A, Barbas C. Metabolomics studies in brain tissue: a review. J Pharm Biomed Anal. 2016;130:141–68.

    Article  CAS  PubMed  Google Scholar 

  • Gotz M, Huttner WB. The cell biology of neurogenesis. Nature reviews. Mol Cell Biol. 2005;6(10):777–88.

    Google Scholar 

  • Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13:330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grison S, Favé G, Maillot M, et al. Metabolomics identifies a biological response to chronic low-dose natural uranium contamination in urine samples. Metabolomics. 2013;9(6):1168–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grison S, Favé G, Maillot M, et al. Metabolomics reveals dose effects of low-dose chronic exposure to uranium in rats: identification of candidate biomarkers in urine samples. Metabolomics. 2016;12(10):154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirst M, Marra MA. Next generation sequencing based approaches to epigenomics. Brief Funct Genomics. 2010;9(5–6):455–65.

    Article  CAS  PubMed  Google Scholar 

  • Hon GC, Hawkins RD, Caballero OL, et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 2012;22(2):246–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houpert P, Frelon S, Lestaevel P, et al. Parental exposure to enriched uranium induced delayed hyperactivity in rat offspring. Neurotoxicology. 2007;28:108–13.

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Zhang Y, Qi Y, et al. Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation. Toxicol Lett. 2008;179(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, Aschner M. Neurotoxicity of depleted uranium: reasons for increased concern. Biol Trace Elem Res. 2006;110:1–17.

    Article  CAS  PubMed  Google Scholar 

  • Kaddurah-Daouk R, Krishnan KR. Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology. 2009;34:173–86.

    Article  CAS  PubMed  Google Scholar 

  • Legrand M, Elie C, Stefani J, et al. Cell proliferation and cell death are disturbed during prenatal and postnatal brain development after uranium exposure. Neurotoxicology. 2016a;52:34–45.

    Article  CAS  PubMed  Google Scholar 

  • Legrand M, Lam S, Anselme I et al. Exposure to depleted uranium during development affects neuronal differentiation in the hippocampal dentate gyrus and induces depressive-like behavior in offspring. Neurotoxicology. 2016b. http://dx.doi.org/10.1016/j.neuro.2016.09.006

    Google Scholar 

  • Lerebours A, Gonzalez P, Adam C, et al. Comparative analysis of gene expression in brain, liver, skeletal muscles, and gills of zebrafish (Danio rerio) exposed to environmentally relevant waterborne uranium concentrations. Environ Toxicol Chem. 2009;28:1271–8.

    Article  CAS  PubMed  Google Scholar 

  • Lerebours A, Adam-Guillermin C, Brèthes D, et al. Mitochondrial energetic metabolism perturbations in skeletal muscles and brain of zebrafish (Danio rerio) exposed to low concentrations of waterborne uranium. Aquat Toxicol. 2010;100(1):66–74.

    Article  CAS  PubMed  Google Scholar 

  • Lestaevel P, Romero E, Dhieux B, et al. Different pattern of brain pro-/anti-oxidant activity between depleted and enriched uranium in chronically exposed rats. Toxicology. 2009;258:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Lestaevel P, Bensoussan H, Dhieux B, et al. Cerebral cortex and hippocampus respond differently after post-natal exposure to uranium. J Toxicol Sci. 2013;38:803–11.

    Article  CAS  PubMed  Google Scholar 

  • Lestaevel P, Dhieux B, Delissen O, et al. Uranium modifies or not behavior and antioxidant status in the hippocampus of rats exposed since birth. J Toxicol Sci. 2015;40:99–107.

    Article  CAS  PubMed  Google Scholar 

  • Lestaevel P, Grison S, Favé G, et al. Assessment of the central effects of natural uranium via behavioural performances and the cerebrospinal fluid metabolome. Neural Plast. 2016; doi:10.1155/2016/9740353.

  • Linares V, Sanchez DJ, Belles M, et al. Pro-oxidant effects in the brain of rats concurrently exposed to uranium and stress. Toxicology. 2007;236:82–91.

    Article  CAS  PubMed  Google Scholar 

  • Linney E, Upchurch L, Donerly S. Zebrafish as a neurotoxicological model. Neurotoxicol Teratol. 2004;26(6):709–18.

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Abe T, Tohgi H, et al. A dopaminergic neurotoxin, (R)-N-methylsalsolinol, increases in parkinsonian cerebrospinal fluid. Ann Neurol. 1996;40:119–22.

    Article  CAS  PubMed  Google Scholar 

  • Miller AC, Stewart M, Rivas R. DNA methylation during depleted uranium-induced leukemia. Biochimie. 2009;91:1328–30.

    Article  CAS  PubMed  Google Scholar 

  • Mouradian MM. MicroRNAs in Parkinson’s disease. Neurobiol Dis. 2012;46:279–84.

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Dostert P, et al. N-methyl-(R)-salsolinol as a dopaminergic neurotoxin: from an animal model to an early marker of Parkinson’s disease. J Neural Transm. 1997;50(Suppl):89–105.

    Article  CAS  Google Scholar 

  • Paquet F, Houpert P, Blanchardon E, et al. Accumulation and distribution of uranium in rats after chronic exposure by ingestion. Health Phys. 2006;90:139–47.

    Article  CAS  PubMed  Google Scholar 

  • Paternain JL, Domingo JL, Ortega A, et al. The effects of uranium on reproduction, gestation, and postnatal survival in mice. Ecotoxicol Environ Saf. 1989;17:291–6.

    Article  CAS  PubMed  Google Scholar 

  • Pellmar TC, Keyser DO, Emery C, et al. Electrophysiological changes in hippocampal slices isolated from rats embedded with depleted uranium fragments. Neurotoxicology. 1999;20:785–92.

    CAS  PubMed  Google Scholar 

  • Petitot F, Frelon S, Chambon C, et al. Proteome changes in rat serum after a chronic ingestion of enriched uranium: toward a biological signature of internal contamination and radiological effect. Toxicol Lett. 2016;257:44–59.

    Article  CAS  PubMed  Google Scholar 

  • Rudenko A, Tsai LH. Epigenetic regulation in memory and cognitive disorders. Neuroscience. 2014;264:51–63.

    Article  CAS  PubMed  Google Scholar 

  • Su S, Jin Y, Zhang W, et al. Aberrant promoter methylation of p16(INK4a) and O(6)-methylguanine-DNA methyltransferase genes in workers at a Chinese uranium mine. J Occup Health. 2006;48(4):261–6.

    Article  CAS  PubMed  Google Scholar 

  • Takiguchi M, Achanzar WE, Qu W, et al. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res. 2003;286(2):355–65.

    Article  CAS  PubMed  Google Scholar 

  • Tomsig JL, Suszkiw JB. Metal selectivity of exocytosis in alpha-toxin-permeabilized bovine chromaffin cells. J Neurochem. 1996;66:644–50.

    Article  CAS  PubMed  Google Scholar 

  • Valinluck V, Tsai HH, Rogstad DK, et al. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 2004;32(14):4100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Christelle Adam-Guillermin and Maamar Souidi for their critical reading, specifically on epigenetic and metabolic pathways, of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Dinocourt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dinocourt, C. (2017). Uranium and the Central Nervous System: What Should We Learn from Recent New Tools and Findings?. In: Aschner, M., Costa, L. (eds) Neurotoxicity of Metals. Advances in Neurobiology, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-60189-2_11

Download citation

Publish with us

Policies and ethics