Skip to main content

Osteoblasts and Osteocytes: Essentials and Methods

  • Chapter
  • First Online:
Principles of Bone and Joint Research

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 861 Accesses

Abstract

This chapter discusses the development of the bone-forming cells that are all descendants from the mesenchymal stem cells (MSCs). MSCs have the ability to self-renew and provide a pool for osteoprogenitors. However, MSCs can also differentiate into cells of the mesodermal cell line, which besides the bone-forming cells include chondroblasts, adipocytes, and muscle cells. Hormones, local factors, and the extracellular matrix program the MSCs into the distinct differentiation pathways. Especially, the inverse relationship between osteogenesis and adipogenesis plays a pivotal role for bone formation and maintenance of the bone. During differentiation of the osteoblastic lineage, cells pass distinct states with distinct roles in the bone-forming process, i.e., matrix synthesis and mineralization as well as regulation of bone remodeling which appears to be mainly directed by osteocytes. Moreover, osteocytes have important endocrine functions as they secrete factors into circulation that regulate other organs of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bianco P. Bone and the hematopoietic niche: a tale of two stem cells. Blood. 2011;117(20):5281–8.

    Article  CAS  PubMed  Google Scholar 

  2. Scadden DT. Nice neighborhood: emerging concepts of the stem cell niche. Cell. 2014;157(1):41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bethel M, Chitteti BR, Srour EF, Kacena MA. The changing balance between osteoblastogenesis and adipogenesis in aging and its impact on hematopoiesis. Curr Osteoporos Rep. 2013;11(2):99–106.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wu JY, Purton LE, Rodda SJ, et al. Osteoblastic regulation of B lymphopoiesis is mediated by Gs{alpha}-dependent signaling pathways. Proc Natl Acad Sci U S A. 2008;105(44):16976–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kode A, Manavalan JS, Mosialou I, et al. Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature. 2014;506(7487):240–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen Q, Shou P, Zheng C, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 2016;23(7):1128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karsenty G. Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet. 2008;9:183–96.

    Article  CAS  PubMed  Google Scholar 

  8. Akiyama H, Kim JE, Nakashima K, et al. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci U S A. 2005;102(41):14665–70.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou G, Zheng Q, Engin F, et al. Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci U S A. 2006;103(50):19004–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology. 2001;142(12):5050–5.

    Article  CAS  PubMed  Google Scholar 

  11. Sroga GE, Vashishth D. Effects of bone matrix proteins on fracture and fragility in osteoporosis. Curr Osteoporos Rep. 2012;10(2):141–50.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thompson WR, Modla S, Grindel BJ, et al. Perlecan/Hspg2 deficiency alters the pericellular space of the lacunocanalicular system surrounding osteocytic processes in cortical bone. J Bone Miner Res. 2011;26(3):618–29.

    Article  CAS  PubMed  Google Scholar 

  13. Staines KA, MacRae VE, Farquharson C. The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J Endocrinol. 2012;214(3):241–55.

    Article  CAS  PubMed  Google Scholar 

  14. Fukumoto S, Martin TJ. Bone as an endocrine organ. Trends Endocrinol Metab. 2009;20(5):230–6.

    Article  CAS  PubMed  Google Scholar 

  15. Kim SW, Pajevic PD, Selig M, et al. Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts. J Bone Miner Res. 2012;27(10):2075–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Neve A, Corrado A, Cantatore FP. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res. 2011;343(2):289–302.

    Article  CAS  PubMed  Google Scholar 

  17. Everts V, Delaisse JM, Korper W, et al. The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res. 2002;17(1):77–90.

    Article  CAS  PubMed  Google Scholar 

  18. Varga F, Luegmayr E, Fratzl-Zelman N, et al. Tri-iodothyronine inhibits multilayer formation of the osteoblastic cell line, MC3T3-E1, by promoting apoptosis. J Endocrinol. 1999;160(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  19. Bodine PV. Wnt signaling control of bone cell apoptosis. Cell Res. 2008;18(2):248–53.

    Article  CAS  PubMed  Google Scholar 

  20. Mikuni-Takagaki Y, Kakai Y, Satoyoshi M, et al. Matrix mineralization and the differentiation of osteocyte-like cells in culture. J Bone Miner Res. 1995;10(2):231–42.

    Article  CAS  PubMed  Google Scholar 

  21. van der Plas A, Nijweide PJ. Isolation and purification of osteocytes. J Bone Miner Res. 1992;7(4):389–96.

    Article  PubMed  Google Scholar 

  22. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell ... and more. Endocr Rev. 2013;34(5):658–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buenzli PR, Sims NA. Quantifying the osteocyte network in the human skeleton. Bone. 2015;75:144–50.

    Article  CAS  PubMed  Google Scholar 

  24. Batra N, Kar R, Jiang JX. Gap junctions and hemichannels in signal transmission, function and development of bone. Biochim Biophys Acta. 2012;1818(8):1909–18.

    Article  CAS  PubMed  Google Scholar 

  25. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–92.

    Article  CAS  PubMed  Google Scholar 

  26. Kim SW, Lu Y, Williams EA, et al. Sclerostin antibody administration converts bone lining cells into active osteoblasts. J Bone Miner Res. 2016;32(5):892–901.

    Google Scholar 

  27. Xiong J, O’Brien CA. Osteocyte RANKL: new insights into the control of bone remodeling. J Bone Miner Res. 2012;27(3):499–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jilka RL, Noble B, Weinstein RS. Osteocyte apoptosis. Bone. 2013;54(2):264–71.

    Article  PubMed  Google Scholar 

  29. Plotkin LI, Bellido T. Osteocytic signalling pathways as therapeutic targets for bone fragility. Nat Rev Endocrinol. 2016;12(10):593–605.

    Article  CAS  PubMed  Google Scholar 

  30. Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp. 1988;136:42–60.

    CAS  PubMed  Google Scholar 

  31. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2(4):313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aubin JE. Regulation of osteoblast formation and function. Rev Endocr Metab Disord. 2001;2(1):81–94.

    Article  CAS  PubMed  Google Scholar 

  33. Fedde KN. Human osteosarcoma cells spontaneously release matrix-vesicle-like structures with the capacity to mineralize. Bone Miner. 1992;17(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  34. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51(6):987–1000.

    Article  CAS  PubMed  Google Scholar 

  35. Ahrens M, Ankenbauer T, Schroder D, Hollnagel A, Mayer H, Gross G. Expression of human bone morphogenetic proteins-2 or −4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol. 1993;12(10):871–80.

    Google Scholar 

  36. Wang EA, Israel DI, Kelly S, Luxenberg DP. Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors. 1993;9(1):57–71.

    Article  CAS  PubMed  Google Scholar 

  37. Udagawa N, Takahashi N, Akatsu T, et al. The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology. 1989;125(4):1805–13.

    Article  CAS  PubMed  Google Scholar 

  38. Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol. 1983;96(1):191–8.

    Article  CAS  PubMed  Google Scholar 

  39. Varga F, Rumpler M, Luegmayr E, Fratzl-Zelman N, Glantschnig H, Klaushofer K. Triiodothyronine, a regulator of osteoblastic differentiation: depression of histone H4, attenuation of c-fos/c-jun, and induction of osteocalcin expression. Calcif Tissue Int. 1997;61(5):404–11.

    Article  CAS  PubMed  Google Scholar 

  40. Luegmayr E, Varga F, Frank T, Roschger P, Klaushofer K. Effects of triiodothyronine on morphology, growth behavior, and the actin cytoskeleton in mouse osteoblastic cells (MC3T3-E1). Bone. 1996;18(6):591–9.

    Article  CAS  PubMed  Google Scholar 

  41. Fratzl-Zelman N, Horandner H, Luegmayr E, et al. Effects of triiodothyronine on the morphology of cells and matrix, the localization of alkaline phosphatase, and the frequency of apoptosis in long-term cultures of MC3T3-E1 cells. Bone. 1997;20(3):225–36.

    Article  CAS  PubMed  Google Scholar 

  42. Fratzl-Zelman N, Fratzl P, Horandner H, et al. Matrix mineralization in MC3T3-E1 cell cultures initiated by beta-glycerophosphate pulse. Bone. 1998;23(6):511–20.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou X, Cui Y, Han J. Phosphate/pyrophosphate and MV-related proteins in mineralisation: discoveries from mouse models. Int J Biol Sci. 2012;8(6):778–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prideaux M, Schutz C, Wijenayaka AR, et al. Isolation of osteocytes from human trabecular bone. Bone. 2016;88:64–72.

    Article  CAS  PubMed  Google Scholar 

  45. Shah KM, Stern MM, Stern AR, Pathak JL, Bravenboer N, Bakker AD. Osteocyte isolation and culture methods. Bonekey Rep. 2016;5:838.

    Article  CAS  PubMed  Google Scholar 

  46. Kerschnitzki M, et al. The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. J Struct Biol. 2011;173:303–11.

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Univ. Prof. Dr. Klaus Klaushofer, Director of the Ludwig Boltzmann Institute of Osteology, for the continuous support and many discussions about bone biology and its relevance for the clinic.

The work was supported by the AUVA (Research funds of the Austrian workers compensation board) and by the WGKK (Viennese sickness insurance funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadja Fratzl-Zelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fratzl-Zelman, N., Varga, F. (2017). Osteoblasts and Osteocytes: Essentials and Methods. In: Pietschmann, P. (eds) Principles of Bone and Joint Research. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-58955-8_2

Download citation

Publish with us

Policies and ethics