Skip to main content

Parallels Between Skeletal Muscle and Bone Aging

  • Chapter
  • First Online:
Non-Pharmacological Management of Osteoporosis

Abstract

Skeletal muscle and bone share a common embryonic origin, form an integrated system that supports physical function, and concurrently undergo remarkable deterioration with aging. Although predominantly studied in isolation, progressive loss of skeletal muscle and deterioration of bone appear coordinated temporally, related mechanistically, and partnered clinically in the context of functional limitations, falls, and fractures. Herein, we discuss age-related changes in skeletal muscle and bone, their implications, and their underlying cellular mechanisms, with particular focus on an emerging area of cellular senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinaki M, Nwaogwugwu NC, Phillips BE, Mokri MP. Effect of gender, age, and anthropometry on axial and appendicular muscle strength. Am J Phys Med Rehabil. [Clinical Trial Comparative Study Research Support, Non-U.S. Gov’t]. 2001;80(5):330–8.

    Google Scholar 

  2. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. 2004;52(1):80–5.

    Google Scholar 

  3. Doherty TJ. Invited review: aging and sarcopenia. J Appl Physiol (1985). [Review]. 2003;95(4):1717–27.

    Google Scholar 

  4. Lenk K, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 2010;1(1):9–21.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marcell TJ. Sarcopenia: causes, consequences, and preventions. J Gerontol A Biol Sci Med Sci. [Review]. 2003;58(10):M911–6.

    Google Scholar 

  6. Foundation NO. 54 million americans affected by osteoporosis and low bone mass. The osteoporosis report [serial on the Internet]. 2014 [cited 2014]; 4. http://nof.org/news/2948

  7. Magaziner J, Hawkes W, Hebel JR, Zimmerman SI, Fox KM, Dolan M, et al. Recovery from hip fracture in eight areas of function. J Gerontol A Biol Sci Med Sci. [Multicenter Study Research Support, U.S. Gov’t, P.H.S.]. 2000;55(9):M498–507.

    Google Scholar 

  8. Leibson CL, Tosteson AN, Gabriel SE, Ransom JE, Melton LJ. Mortality, disability, and nursing home use for persons with and without hip fracture: a population-based study. J Am Geriatr Soc. [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. 2002;50(10):1644–50.

    Google Scholar 

  9. Blume SW, Curtis JR. Medical costs of osteoporosis in the elderly Medicare population. Osteoporos Int. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2011;22(6):1835–44.

    Google Scholar 

  10. Khosla S, Westendorf JJ, Oursler MJ. Building bone to reverse osteoporosis and repair fractures. J Clin Invest. 2008;118(2):421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. [Research Support, N.I.H., Extramural Review]. 2006;2(1):35–43.

    Google Scholar 

  12. Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, et al. Marrow fat and bone—new perspectives. J Clin Endocrinol Metab. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. 2013;98(3):935–45.

    Google Scholar 

  13. Nuttall ME, Shah F, Singh V, Thomas-Porch C, Frazier T, Gimble JM. Adipocytes and the regulation of bone remodeling: a balancing act. Calcif Tissue Int. 2014;94(1):78–87.

    Article  CAS  PubMed  Google Scholar 

  14. Fretz JA, Nelson T, Xi Y, Adams DJ, Rosen CJ, Horowitz MC. Altered metabolism and lipodystrophy in the early B-cell factor 1-deficient mouse. Endocrinology. [Research Support, N.I.H., Extramural]. 2010;151(4):1611–21.

    Google Scholar 

  15. Elbaz A, Wu X, Rivas D, Gimble JM, Duque G. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro. J Cell Mol Med. [Research Support, Non-U.S. Gov’t]. 2010;14(4):982–91.

    Google Scholar 

  16. Zayzafoon M, Gathings WE, McDonald JM. Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology. [Research Support, U.S. Gov’t, P.H.S.]. 2004;145(5):2421–32.

    Google Scholar 

  17. David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, et al. Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology. [Research Support, Non-U.S. Gov’t]. 2007;148(5):2553–62.

    Google Scholar 

  18. Rubin CT, Capilla E, Luu YK, Busa B, Crawford H, Nolan DJ, et al. Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci U S A. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. 2007;104(45):17879–84.

    Google Scholar 

  19. Case N, Thomas J, Xie Z, Sen B, Styner M, Rowe D, et al. Mechanical input restrains PPARgamma2 expression and action to preserve mesenchymal stem cell multipotentiality. Bone. [Research Support, N.I.H., Extramural]. 2013;52(1):454–64.

    Google Scholar 

  20. Styner M, Thompson WR, Galior K, Uzer G, Wu X, Kadari S, et al. Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone. 2014;64:39–46.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Proctor DN, Melton LJ, Khosla S, Crowson CS, O’Connor MK, Riggs BL. Relative influence of physical activity, muscle mass and strength on bone density. Osteoporos Int. [Research Support, U.S. Gov’t, P.H.S.]. 2000;11(11):944–52.

    Google Scholar 

  22. Khosla S, Atkinson EJ, Riggs BL, Melton 3rd LJ. Relationship between body composition and bone mass in women. J Bone Miner Res. [Research Support, U.S. Gov’t, P.H.S.]. 1996;11(6):857–63.

    Google Scholar 

  23. Lebrasseur NK, Achenbach SJ, Melton 3rd LJ, Amin S, Khosla S. Skeletal muscle mass is associated with bone geometry and microstructure and serum insulin-like growth factor binding protein-2 levels in adult women and men. J Bone Miner Res. [Research Support, N.I.H., Extramural]. 2012;27(10):2159–69.

    Google Scholar 

  24. Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol (1985). [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. 2000;89(1):81–8.

    Google Scholar 

  25. Walsh MC, Hunter GR, Livingstone MB. Sarcopenia in premenopausal and postmenopausal women with osteopenia, osteoporosis and normal bone mineral density. Osteoporos Int. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. 2006;17(1):61–7.

    Google Scholar 

  26. Joseph C, Kenny AM, Taxel P, Lorenzo JA, Duque G, Kuchel GA. Role of endocrine-immune dysregulation in osteoporosis, sarcopenia, frailty and fracture risk. Mol Aspects Med. [Review]. 2005;26(3):181–201.

    Google Scholar 

  27. Rosenberg IH, Roubenoff R. Stalking sarcopenia. Ann Intern Med. [Editorial]. 1995;123(9):727–8.

    Google Scholar 

  28. Greenlund LJ, Nair KS. Sarcopenia—consequences, mechanisms, and potential therapies. Mech Ageing Dev. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. 2003;124(3):287–99.

    Google Scholar 

  29. Riggs BL, Khosla S, Melton 3rd LJ. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res. [Research Support, U.S. Gov’t, P.H.S. Review]. 1998;13(5):763–73.

    Google Scholar 

  30. Bruunsgaard H, Pedersen M, Pedersen BK. Aging and proinflammatory cytokines. Curr Opin Hematol. [Research Support, Non-U.S. Gov’t Review]. 2001;8(3):131–6.

    Google Scholar 

  31. McLean RR. Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep. [Review]. 2009;7(4):134–9.

    Google Scholar 

  32. Morley JE, Baumgartner RN. Cytokine-related aging process. J Gerontol A Biol Sci Med Sci. [Comment Editorial Review]. 2004;59(9):M924–9.

    Google Scholar 

  33. Hamrick MW, McNeil PL, Patterson SL. Role of muscle-derived growth factors in bone formation. J Musculoskelet Neuronal Interact. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. 2010;10(1):64–70.

    Google Scholar 

  34. Olguin HC, Pisconti A. Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions. J Cell Mol Med. [Research Support, Non-U.S. Gov’t Review]. 2012;16(5):1013–25.

    Google Scholar 

  35. Undale AH, Westendorf JJ, Yaszemski MJ, Khosla S. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin Proc. 2009;84(10):893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem. [Research Support, Non-U.S. Gov’t Review]. 2006;99(5):1233–9.

    Google Scholar 

  37. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.

    Article  CAS  PubMed  Google Scholar 

  38. Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK, et al. Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov. [Research Support, Non-U.S. Gov’t Review]. 2012;11(5):401–19.

    Google Scholar 

  39. Newgard CB, Sharpless NE. Coming of age: molecular drivers of aging and therapeutic opportunities. J Clin Invest. [Introductory]. 2013;123(3):946–50.

    Google Scholar 

  40. Waaijer ME, Parish WE, Strongitharm BH, van Heemst D, Slagboom PE, de Craen AJ, et al. The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell. [Research Support, Non-U.S. Gov’t]. 2012;11(4):722–5.

    Google Scholar 

  41. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. Cellular senescence in aging primates. Science. [Research Support, N.I.H., Extramural]. 2006;311(5765):1257.

    Google Scholar 

  42. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. 2013;123(3):966–72.

    Google Scholar 

  43. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. [Research Support, Non-U.S. Gov’t Review]. 2007;130(2):223–33.

    Google Scholar 

  44. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2011;479(7372):232–6.

    Google Scholar 

  45. van Deursen JM. The role of senescent cells in ageing. Nature. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. 2014;509(7501):439–46.

    Google Scholar 

  46. Marie PJ. Bone cell senescence: mechanisms and perspectives. J Bone Miner Res. [Research Support, Non-U.S. Gov’t]. 2014;29(6):1311–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nathan K. LeBrasseur PhD or Jennifer J. Westendorf PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

LeBrasseur, N.K., Westendorf, J.J. (2017). Parallels Between Skeletal Muscle and Bone Aging. In: Sinaki, M., Pfeifer, M. (eds) Non-Pharmacological Management of Osteoporosis. Springer, Cham. https://doi.org/10.1007/978-3-319-54016-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54016-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54014-6

  • Online ISBN: 978-3-319-54016-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics