Skip to main content

Drug Addiction and Histone Code Alterations

  • Chapter
  • First Online:
Neuroepigenomics in Aging and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 978))

Abstract

Acute and prolonged exposure to drugs of abuse induces changes in gene expression, synaptic function, and neural plasticity in brain regions involved in reward. Numerous genes are involved in this process, and persistent changes in gene expression coincide with epigenetic histone modifications and DNA methylation. Histone modifications are attractive regulatory mechanisms, which can encode complex environmental signals in the genome of postmitotic cells, like neurons. Recently, it has been demonstrated that specific histone modifications are involved in addiction-related gene regulatory mechanisms, by a diverse set of histone-modifying enzymes and readers. These histone modifiers and readers may prove to be valuable pharmacological targets for effective treatments for drug addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feng J, Nestler EJ. Epigenetic mechanisms of drug addiction. Curr Opin Neurobiol. 2013;23(4):521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walker DM, Cates HM, Heller EA, Nestler EJ. Regulation of chromatin states by drugs of abuse. Curr Opin Neurobiol. 2015;30:112–21.

    Article  CAS  PubMed  Google Scholar 

  3. Izzo A, Schneider R. The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics. Biochim Biophys Acta. 2016;1859(3):486–95.

    Article  PubMed  Google Scholar 

  4. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  CAS  PubMed  Google Scholar 

  5. Graff J, Tsai LH. Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci. 2013;14(2):97–111.

    Article  PubMed  Google Scholar 

  6. Alam H, Gu B, Lee MG. Histone methylation modifiers in cellular signaling pathways. Cell Mol Life Sci. 2015;72(23):4577–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rossetto D, Avvakumov N, Cote J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics. 2012;7(10):1098–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature. 2004;431(7010):873–8.

    Article  CAS  PubMed  Google Scholar 

  9. Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA, et al. RAD6-mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell. 2009;137(3):459–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nathan D, Ingvarsdottir K, Sterner DE, Bylebyl GR, Dokmanovic M, Dorsey JA, et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev. 2006;20(8):966–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cohen-Armon M, Visochek L, Rozensal D, Kalal A, Geistrikh I, Klein R, et al. DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol Cell. 2007;25(2):297–308.

    Article  CAS  PubMed  Google Scholar 

  12. D'Amours D, Desnoyers S, D'Silva I, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J. 1999;342(Pt 2):249–68.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, et al. Histone deimination antagonizes arginine methylation. Cell. 2004;118(5):545–53.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science. 2004;306(5694):279–83.

    Article  CAS  PubMed  Google Scholar 

  15. Gambetta MC, Muller J. A critical perspective of the diverse roles of O-GlcNAc transferase in chromatin. Chromosoma. 2015;124(4):429–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell. 2000;5(6):905–15.

    Article  CAS  PubMed  Google Scholar 

  17. Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16(9):519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller CA, Campbell SL, Sweatt JD. DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiol Learn Mem. 2008;89(4):599–603.

    Article  CAS  PubMed  Google Scholar 

  19. Maze I, Shen L, Zhang B, Garcia BA, Shao N, Mitchell A, et al. Analytical tools and current challenges in the modern era of neuroepigenomics. Nat Neurosci. 2014;17(11):1476–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tweedie-Cullen RY, Brunner AM, Grossmann J, Mohanna S, Sichau D, Nanni P, et al. Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PLoS One. 2012;7(5):e36980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanchis-Segura C, Lopez-Atalaya JP, Barco A. Selective boosting of transcriptional and behavioral responses to drugs of abuse by histone deacetylase inhibition. Neuropsychopharmacology. 2009;34(13):2642–54.

    Article  CAS  PubMed  Google Scholar 

  22. Levine A, Huang Y, Drisaldi B, Griffin Jr EA, Pollak DD, Xu S, et al. Molecular mechanism for a gateway drug: epigenetic changes initiated by nicotine prime gene expression by cocaine. Sci Transl Med. 2011;3(107):107ra9.

    Article  Google Scholar 

  23. Wang L, Lv Z, Hu Z, Sheng J, Hui B, Sun J, et al. Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology. 2010;35(4):913–28.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, Truong HT, et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron. 2005;48(2):303–14.

    Article  CAS  PubMed  Google Scholar 

  25. Renthal W, Kumar A, Xiao G, Wilkinson M, Covington 3rd HE, Maze I, et al. Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron. 2009;62(3):335–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Levine AA, Guan Z, Barco A, Xu S, Kandel ER, Schwartz JH. CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum. Proc Natl Acad Sci U S A. 2005;102(52):19186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang YY, Levine A, Kandel DB, Yin D, Colnaghi L, Drisaldi B, et al. D1/D5 receptors and histone deacetylation mediate the Gateway effect of LTP in hippocampal dentate gyrus. Learn Mem. 2014;21(3):153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang YY, Kandel DB, Kandel ER, Levine A. Nicotine primes the effect of cocaine on the induction of LTP in the amygdala. Neuropharmacology. 2013;74:126–34.

    Article  CAS  PubMed  Google Scholar 

  29. Malvaez M, Mhillaj E, Matheos DP, Palmery M, Wood MA. CBP in the nucleus accumbens regulates cocaine-induced histone acetylation and is critical for cocaine-associated behaviors. J Neurosci. 2011;31(47):16941–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmidt HD, Sangrey GR, Darnell SB, Schassburger RL, Cha JH, Pierce RC, et al. Increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area during cocaine abstinence is associated with increased histone acetylation at BDNF exon I-containing promoters. J Neurochem. 2012;120(2):202–9.

    Article  CAS  PubMed  Google Scholar 

  31. Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. Biochim Biophys Acta. 2016;1864(10):1372–401.

    Article  CAS  PubMed  Google Scholar 

  32. Malvaez M, Sanchis-Segura C, Vo D, Lattal KM, Wood MA. Modulation of chromatin modification facilitates extinction of cocaine-induced conditioned place preference. Biol Psychiatry. 2010;67(1):36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Renthal W, Maze I, Krishnan V, Covington 3rd HE, Xiao G, Kumar A, et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron. 2007;56(3):517–29.

    Article  CAS  PubMed  Google Scholar 

  34. Rogge GA, Singh H, Dang R, Wood MA. HDAC3 is a negative regulator of cocaine-context-associated memory formation. J Neurosci. 2013;33(15):6623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kennedy PJ, Feng J, Robison AJ, Maze I, Badimon A, Mouzon E, et al. Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nat Neurosci. 2013;16(4):434–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Malvaez M, McQuown SC, Rogge GA, Astarabadi M, Jacques V, Carreiro S, et al. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci U S A. 2013;110(7):2647–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsai SY, Chuang JY, Tsai MS, Wang XF, Xi ZX, Hung JJ, et al. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope. Proc Natl Acad Sci U S A. 2015;112(47):E6562–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferguson D, Koo JW, Feng J, Heller E, Rabkin J, Heshmati M, et al. Essential role of SIRT1 signaling in the nucleus accumbens in cocaine and morphine action. J Neurosci. 2013;33(41):16088–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferguson D, Shao N, Heller E, Feng J, Neve R, Kim HD, et al. SIRT1-FOXO3a regulate cocaine actions in the nucleus accumbens. J Neurosci. 2015;35(7):3100–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jayanthi S, McCoy MT, Chen B, Britt JP, Kourrich S, Yau HJ, et al. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol Psychiatry. 2014;76(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  41. Engel GL, Marella S, Kaun KR, Wu J, Adhikari P, Kong EC, et al. Sir2/Sirt1 links acute inebriation to presynaptic changes and the development of alcohol tolerance, preference, and reward. J Neurosci. 2016;36(19):5241–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pena CJ, Bagot RC, Labonte B, Nestler EJ. Epigenetic signaling in psychiatric disorders. J Mol Biol. 2014;426(20):3389–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maze I, Feng J, Wilkinson MB, Sun H, Shen L, Nestler EJ. Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proc Natl Acad Sci U S A. 2011;108(7):3035–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maze I, Covington 3rd HE, Dietz DM, LaPlant Q, Renthal W, Russo SJ, et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science. 2010;327(5962):213–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci. 2011;12(11):623–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heller EA, Hamilton PJ, Burek DD, Lombroso SI, Pena CJ, Neve RL, et al. Targeted epigenetic remodeling of the Cdk5 gene in nucleus accumbens regulates cocaine- and stress-evoked behavior. J Neurosci. 2016;36(17):4690–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bibb JA, Chen J, Taylor JR, Svenningsson P, Nishi A, Snyder GL, et al. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature. 2001;410(6826):376–80.

    Article  CAS  PubMed  Google Scholar 

  48. Li Y, Zhu R, Wang W, Fu D, Hou J, Ji S, et al. Arginine methyltransferase 1 in the nucleus accumbens regulates behavioral effects of cocaine. J Neurosci. 2015;35(37):12890–902.

    Article  CAS  PubMed  Google Scholar 

  49. Damez-Werno DM, Sun H, Scobie KN, Shao N, Rabkin J, Dias C, et al. Histone arginine methylation in cocaine action in the nucleus accumbens. Proc Natl Acad Sci U S A. 2016;113(34):9623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aguilar-Valles A, Vaissiere T, Griggs EM, Mikaelsson MA, Takacs IF, Young EJ, et al. Methamphetamine-associated memory is regulated by a writer and an eraser of permissive histone methylation. Biol Psychiatry. 2014;76(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  51. Godino A, Jayanthi S, Cadet JL. Epigenetic landscape of amphetamine and methamphetamine addiction in rodents. Epigenetics. 2015;10(7):574–80.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Krasnova IN, Chiflikyan M, Justinova Z, McCoy MT, Ladenheim B, Jayanthi S, et al. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiol Dis. 2013;58:132–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun H, Maze I, Dietz DM, Scobie KN, Kennedy PJ, Damez-Werno D, et al. Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens. J Neurosci. 2012;32(48):17454–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koo JW, Mazei-Robison MS, LaPlant Q, Egervari G, Braunscheidel KM, Adank DN, et al. Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. Nat Neurosci. 2015;18(3):415–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Feng J, Wilkinson M, Liu X, Purushothaman I, Ferguson D, Vialou V, et al. Chronic cocaine-regulated epigenomic changes in mouse nucleus accumbens. Genome Biol. 2014;15(4):R65.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brami-Cherrier K, Valjent E, Herve D, Darragh J, Corvol JC, Pages C, et al. Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci. 2005;25(49):11444–54.

    Article  CAS  PubMed  Google Scholar 

  57. Stipanovich A, Valjent E, Matamales M, Nishi A, Ahn JH, Maroteaux M, et al. A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature. 2008;453(7197):879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jordi E, Heiman M, Marion-Poll L, Guermonprez P, Cheng SK, Nairn AC, et al. Differential effects of cocaine on histone posttranslational modifications in identified populations of striatal neurons. Proc Natl Acad Sci U S A. 2013;110(23):9511–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kraus WL. Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol. 2008;20(3):294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kraus WL, Lis JT. PARP goes transcription. Cell. 2003;113(6):677–83.

    Article  CAS  PubMed  Google Scholar 

  61. Ha HC, Snyder SH. Poly(ADP-ribose) polymerase-1 in the nervous system. Neurobiol Dis. 2000;7(4):225–39.

    Article  CAS  PubMed  Google Scholar 

  62. Fontan-Lozano A, Suarez-Pereira I, Horrillo A, del-Pozo-Martin Y, Hmadcha A, Carrion AM. Histone H1 poly[ADP]-ribosylation regulates the chromatin alterations required for learning consolidation. J Neurosci. 2010;30(40):13305–13.

    Article  CAS  PubMed  Google Scholar 

  63. Scobie KN, Damez-Werno D, Sun H, Shao N, Gancarz A, Panganiban CH, et al. Essential role of poly(ADP-ribosyl)ation in cocaine action. Proc Natl Acad Sci U S A. 2014;111(5):2005–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nestler EJ. Common molecular and cellular substrates of addiction and memory. Neurobiol Learn Mem. 2002;78(3):637–47.

    Article  CAS  PubMed  Google Scholar 

  65. Dong Y, Nestler EJ. The neural rejuvenation hypothesis of cocaine addiction. Trends Pharmacol Sci. 2014;35(8):374–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Creed MC, Luscher C. Drug-evoked synaptic plasticity: beyond metaplasticity. Curr Opin Neurobiol. 2013;23(4):553–8.

    Article  CAS  PubMed  Google Scholar 

  67. Cahill ME, Bagot RC, Gancarz AM, Walker DM, Sun H, Wang ZJ, et al. Bidirectional synaptic structural plasticity after chronic cocaine administration occurs through Rap1 small GTPase signaling. Neuron. 2016;89(3):566–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y. Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci. 2003;23(3):742–7.

    CAS  PubMed  Google Scholar 

  69. Sartor GC, Powell SK, Brothers SP, Wahlestedt C. Epigenetic readers of lysine acetylation regulate cocaine-induced plasticity. J Neurosci. 2015;35(45):15062–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lobo MK, Covington 3rd HE, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science. 2010;330(6002):385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maze I, Chaudhury D, Dietz DM, Von Schimmelmann M, Kennedy PJ, Lobo MK, et al. G9a influences neuronal subtype specification in striatum. Nat Neurosci. 2014;17(4):533–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Koo JW, Lobo MK, Chaudhury D, Labonte B, Friedman A, Heller E, et al. Loss of BDNF signaling in D1R-expressing NAc neurons enhances morphine reward by reducing GABA inhibition. Neuropsychopharmacology. 2014;39(11):2646–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guez-Barber D, Fanous S, Golden SA, Schrama R, Koya E, Stern AL, et al. FACS identifies unique cocaine-induced gene regulation in selectively activated adult striatal neurons. J Neurosci. 2011;31(11):4251–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chandra R, Francis TC, Konkalmatt P, Amgalan A, Gancarz AM, Dietz DM, et al. Opposing role for Egr3 in nucleus accumbens cell subtypes in cocaine action. J Neurosci. 2015;35(20):7927–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thakore PI, Black JB, Hilton IB, Gersbach CA. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods. 2016;13(2):127–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33(5):510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Heller EA, Cates HM, Pena CJ, Sun H, Shao N, Feng J, et al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci. 2014;17(12):1720–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14(9):609–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from NARSAD and NIMH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deveroux Ferguson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kim, HD., Call, T., Magazu, S., Ferguson, D. (2017). Drug Addiction and Histone Code Alterations. In: Delgado-Morales, R. (eds) Neuroepigenomics in Aging and Disease. Advances in Experimental Medicine and Biology(), vol 978. Springer, Cham. https://doi.org/10.1007/978-3-319-53889-1_7

Download citation

Publish with us

Policies and ethics