Skip to main content

DNA Methylation in Schizophrenia

  • Chapter
  • First Online:
Neuroepigenomics in Aging and Disease

Abstract

Schizophrenia is a highly heritable psychiatric condition that displays a complex phenotype. A multitude of genetic susceptibility loci have now been identified, but these fail to explain the high heritability estimates of schizophrenia. In addition, epidemiologically relevant environmental risk factors for schizophrenia may lead to permanent changes in brain function. In conjunction with genetic liability, these environmental risk factors—likely through epigenetic mechanisms—may give rise to schizophrenia, a clinical syndrome characterized by florid psychotic symptoms and moderate to severe cognitive impairment. These pathophysiological features point to the involvement of epigenetic processes. Recently, a wave of studies examining aberrant DNA modifications in schizophrenia was published. This chapter aims to comprehensively review the current findings, from both candidate gene studies and genome-wide approaches, on DNA methylation changes in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Os J, Kapur S. Schizophrenia. Lancet. 2009;374(9690):635–45. doi:10.1016/s0140-6736(09)60995-8.

    Article  PubMed  Google Scholar 

  2. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388(10039):86–97. doi:10.1016/s0140-6736(15)01121-6.

    Article  PubMed  Google Scholar 

  3. Ripke S, Neale BM, Corvin A, Walters JT, Farh K-H, Holmans PA, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421. doi:10.1038/nature13595.

    Article  CAS  PubMed Central  Google Scholar 

  4. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530(7589):177–83. doi:10.1038/nature16549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li M, Jaffe AE, Straub RE, Tao R, Shin JH, Wang Y, et al. A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24. 32 schizophrenia-associated locus. Nat Med. 2016;22(6):649–56. doi:10.1038/nm.4096.

    Article  CAS  PubMed  Google Scholar 

  6. Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Perlis RH, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45(9):984–94. doi:10.1038/ng.2711.

    Article  CAS  PubMed  Google Scholar 

  7. Genovese G, Fromer M, Stahl EA, Ruderfer DM, Chambert K, Landén M, et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci. 2016;19(11):1433–41. doi:10.1038/nn.4402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marshall C, Howrigan D, Merico D, Thiruvahindrapuram B, Wu W, Greer D et al. A contribution of novel CNVs to schizophrenia from a genome-wide study of 41,321 subjects. bioRxiv. 2016:040493.

    Google Scholar 

  9. Van Os J, Rutten BP, Poulton R. Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull. 2008;34(6):1066–82. doi:10.1093/schbul/sbn117.

    Article  PubMed  PubMed Central  Google Scholar 

  10. van Os J, Kenis G, Rutten BP. The environment and schizophrenia. Nature. 2010;468(7321):203–12. doi:10.1038/nature09563.

    Article  PubMed  Google Scholar 

  11. Insel TR. Rethinking schizophrenia. Nature. 2010;468(7321):187–93. doi:10.1038/nature09552.

    Article  CAS  PubMed  Google Scholar 

  12. Horváth S, Mirnics K. Schizophrenia as a disorder of molecular pathways. Biol Psychiatry. 2015;77(1):22–8.

    Article  PubMed  Google Scholar 

  13. Hall J, Trent S, Thomas KL, O’Donovan MC, Owen MJ. Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol Psychiatry. 2015;77(1):52–8.

    Article  CAS  PubMed  Google Scholar 

  14. Cannon TD. How Schizophrenia Develops: Cognitive and Brain Mechanisms Underlying Onset of Psychosis. Trends Cogn Sci. 2015;19(12):744–56. doi:10.1016/j.tics.2015.09.009.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Green MF, Horan WP, Lee J. Social cognition in schizophrenia. Nat Rev Neurosci. 2015;16(10):620–31. doi:10.1038/nrn4005.

    Article  CAS  PubMed  Google Scholar 

  16. Pishva E, Kenis G, van den Hove D, Lesch KP, Boks MP, van Os J, et al. The epigenome and postnatal environmental influences in psychotic disorders. Soc Psychiatry Psychiatr Epidemiol. 2014;49(3):337–48. doi:10.1007/s00127-014-0831-2.

    Article  PubMed  Google Scholar 

  17. Teroganova N, Girshkin L, Suter CM, Green MJ. DNA methylation in peripheral tissue of schizophrenia and bipolar disorder: a systematic review. BMC Genet. 2016;17(1):1. doi:10.1186/s12863-016-0332-2.

    Article  Google Scholar 

  18. Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology. 2001;25(1):1–27.

    Article  CAS  PubMed  Google Scholar 

  19. Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6(4):312–24.

    Article  CAS  PubMed  Google Scholar 

  20. Bird E, Barnes J, Iversen L, Spokes E, Mackay AP, Shepherd M. Increased brain dopamine and reduced glutamic acid decarboxylase and choline acetyl transferase activity in schizophrenia and related psychoses. The Lancet. 1977;310(8049):1157–9.

    Article  Google Scholar 

  21. Perry T, Buchanan J, Kish S, Hansen S. γ-Aminobutyric-acid deficiency in brain of schizophrenic patients. Lancet. 1979;313(8110):237–9.

    Article  Google Scholar 

  22. Spokes EG, Garrett NJ, Rossor MN, Iversen LL. Distribution of GABA in post-mortem brain tissue from control, psychotic and Huntington’s chorea subjects. J Neurol Sci. 1980;48(3):303–13.

    Article  CAS  PubMed  Google Scholar 

  23. Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008;82(3):696–711. doi:10.1016/j.ajhg.2008.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen Y, Sharma RP, Costa RH, Costa E, Grayson DR. On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res. 2002;30(13):2930–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Costa E, Grayson DR, Guidotti A. Epigenetic downregulation of GABAergic function in schizophrenia: potential for pharmacological intervention? Mol Interv. 2003;3(4):220.

    Article  CAS  PubMed  Google Scholar 

  26. Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M, et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2005;134(1):60–6. doi:10.1002/ajmg.b.30140.

    Article  Google Scholar 

  27. Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A. 2005;102(26):9341–6. doi:10.1073/pnas.0503736102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tochigi M, Iwamoto K, Bundo M, Komori A, Sasaki T, Kato N, et al. Methylation status of the reelin promoter region in the brain of schizophrenic patients. Biol Psychiatry. 2008;63(5):530–3. doi:10.1016/j.biopsych.2007.07.003.

    Article  CAS  PubMed  Google Scholar 

  29. Mitchell AC, Jiang Y, Peter C, Akbarian S. Transcriptional regulation of GAD1 GABA synthesis gene in the prefrontal cortex of subjects with schizophrenia. Schizophr Res. 2015;167(1):28–34. doi:10.1016/j.schres.2014.10.020.

    Article  PubMed  Google Scholar 

  30. Huang HS, Akbarian S. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia. PLoS One. 2007;2(8):e809. doi:10.1371/journal.pone.0000809.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ruzicka WB, Subburaju S, Benes FM. Circuit-and Diagnosis-Specific DNA Methylation Changes at γ-Aminobutyric Acid–Related Genes in Postmortem Human Hippocampus in Schizophrenia and Bipolar Disorder. JAMA Psychiat. 2015;72(6):541–51.

    Article  Google Scholar 

  32. Selvaraj S, Arnone D, Cappai A, Howes O. Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev. 2014;45:233–45.

    Article  CAS  PubMed  Google Scholar 

  33. Meltzer HY, Li Z, Kaneda Y, Ichikawa J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(7):1159–72.

    Article  CAS  PubMed  Google Scholar 

  34. Carrard A, Salzmann A, Malafosse A, Karege F. Increased DNA methylation status of the serotonin receptor 5HTR1A gene promoter in schizophrenia and bipolar disorder. J Affect Disord. 2011;132(3):450–3. doi:10.1016/j.jad.2011.03.018.

    Article  CAS  PubMed  Google Scholar 

  35. Abdolmaleky HM, Yaqubi S, Papageorgis P, Lambert AW, Ozturk S, Sivaraman V, et al. Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophr Res. 2011;129(2):183–90. doi:10.1016/j.schres.2011.04.007.

    Article  PubMed  Google Scholar 

  36. Abdolmaleky HM, Nohesara S, Ghadirivasfi M, Lambert AW, Ahmadkhaniha H, Ozturk S, et al. DNA hypermethylation of serotonin transporter gene promoter in drug naive patients with schizophrenia. Schizophr Res. 2014;152(2):373–80. doi:10.1016/j.schres.2013.12.007.

    Article  PubMed  Google Scholar 

  37. Melas PA, Rogdaki M, Ösby U, Schalling M, Lavebratt C, Ekström TJ. Epigenetic aberrations in leukocytes of patients with schizophrenia: association of global DNA methylation with antipsychotic drug treatment and disease onset. FASEB J. 2012;26(6):2712–8.

    Article  CAS  PubMed  Google Scholar 

  38. Kordi-Tamandani DM, Sahranavard R, Torkamanzehi A. Analysis of association between dopamine receptor genes’ methylation and their expression profile with the risk of schizophrenia. Psychiatr Genet. 2013;23(5):183–7. doi:10.1097/YPG.0b013e328363d6e1.

    Article  CAS  PubMed  Google Scholar 

  39. Yoshino Y, Kawabe K, Mori T, Mori Y, Yamazaki K, Numata S, et al. Low methylation rates of dopamine receptor D2 gene promoter sites in Japanese schizophrenia subjects. World J Biol Psychiatry. 2016;17:449–56. doi:10.1080/15622975.2016.1197424.

    Article  PubMed  Google Scholar 

  40. Zhang AP, Yu J, Liu JX, Zhang HY, Du YY, Zhu JD, He G, Li XW, Gu NF, Feng GY, He L. The DNA methylation profile within the 5′-regulatory region of DRD2 in discordant sib pairs with schizophrenia. Schizophr Res. 2007;90(1):97–103. doi:10.1016/j.schres.2006.11.007.

    Article  PubMed  Google Scholar 

  41. Kordi-Tamandani DM, Sahranavard R, Torkamanzehi A. DNA methylation and expression profiles of the brain-derived neurotrophic factor (BDNF) and dopamine transporter (DAT1) genes in patients with schizophrenia. Mol Biol Rep. 2012;39(12):10889–93. doi:10.1007/s11033-012-1986-0.

    Article  CAS  PubMed  Google Scholar 

  42. Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet. 2006;15(21):3132–45. doi:10.1093/hmg/ddl253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nohesara S, Ghadirivasfi M, Mostafavi S, Eskandari MR, Ahmadkhaniha H, Thiagalingam S, et al. DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res. 2011;45(11):1432–8. doi:10.1016/j.jpsychires.2011.06.013.

    Article  PubMed  Google Scholar 

  44. Murphy BC, O’Reilly RL, Singh SM. Site-specific cytosine methylation in S-COMT promoter in 31 brain regions with implications for studies involving schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2005;133(1):37–42. doi:10.1002/ajmg.b.30134.

    Article  Google Scholar 

  45. Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol. 2015;29(2):97–115.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kordi-Tamandani DM, Dahmardeh N, Torkamanzehi A. Evaluation of hypermethylation and expression pattern of GMR2, GMR5, GMR8, and GRIA3 in patients with schizophrenia. Gene. 2013;515(1):163–6. doi:10.1016/j.gene.2012.10.075.

    Article  CAS  PubMed  Google Scholar 

  47. Ikegame T, Bundo M, Sunaga F, Asai T, Nishimura F, Yoshikawa A, et al. DNA methylation analysis of BDNF gene promoters in peripheral blood cells of schizophrenia patients. Neurosci Res. 2013;77(4):208–14.

    Article  CAS  PubMed  Google Scholar 

  48. Çöpoğlu ÜS, İğci M, Bozgeyik E, Kokaçya MH, İğci YZ, Dokuyucu R, et al. DNA Methylation of BDNF Gene in Schizophrenia. Med Sci Monit. 2016;22:397.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Keller S, Errico F, Zarrilli F, Florio E, Punzo D, Mansueto S, et al. DNA methylation state of BDNF gene is not altered in prefrontal cortex and striatum of schizophrenia subjects. Psychiatry Res. 2014;220(3):1147–50.

    Article  CAS  PubMed  Google Scholar 

  50. Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, Whitehall VL, et al. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl Psychiatry. 2014;4:e339. doi:10.1038/tp.2013.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pidsley R, Viana J, Hannon E, Spiers H, Troakes C, Al-Saraj S, et al. Methylomic profiling of human brain tissue supports a neurodevelopmental origin for schizophrenia. Genome Biol. 2014;15(10):483. doi:10.1186/s13059-014-0483-2.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hannon E, Dempster E, Viana J, Burrage J, Smith AR, Macdonald R, et al. An integrated genetic-epigenetic analysis of schizophrenia: evidence for co-localization of genetic associations and differential DNA methylation. Genome Biol. 2016;17(1):176. doi:10.1186/s13059-016-1041-x.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Aberg KA, McClay JL, Nerella S, Clark S, Kumar G, Chen W, et al. Methylome-wide association study of schizophrenia: Identifying blood biomarker signatures of environmental insults. JAMA Psychiat. 2014;71(3):255–64. doi:10.1001/jamapsychiatry.2013.3730.

    Article  CAS  Google Scholar 

  54. Kinoshita M, Numata S, Tajima A, Ohi K, Hashimoto R, Shimodera S, et al. Aberrant DNA methylation of blood in schizophrenia by adjusting for estimated cellular proportions. Neuromolecular Med. 2014;16(4):697–703. doi:10.1007/s12017-014-8319-5.

    Article  CAS  PubMed  Google Scholar 

  55. Kinoshita M, Numata S, Tajima A, Shimodera S, Ono S, Imamura A, et al. DNA methylation signatures of peripheral leukocytes in schizophrenia. Neuromolecular Med. 2013;15(1):95–101. doi:10.1007/s12017-012-8198-6.

    Article  CAS  PubMed  Google Scholar 

  56. Castellani CA, Laufer BI, Melka MG, Diehl EJ, O’Reilly RL, Singh SM. DNA methylation differences in monozygotic twin pairs discordant for schizophrenia identifies psychosis related genes and networks. BMC Med Genomics. 2015;8(1):17. doi:10.1186/s12920-015-0093-1.

    Article  PubMed  PubMed Central  Google Scholar 

  57. van den Oord EJ, Clark SL, Xie LY, Shabalin AA, Dozmorov MG, Kumar G, et al. A Whole Methylome CpG-SNP Association Study of Psychosis in Blood and Brain Tissue. Schizophr Bull. 2016;42(4):1018–26. doi:10.1093/schbul/sbv182.

    Article  PubMed  Google Scholar 

  58. Dempster EL, Pidsley R, Schalkwyk LC, Owens S, Georgiades A, Kane F, et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet. 2011;20(24):4786–96. doi:10.1093/hmg/ddr416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen C, Zhang CL, Cheng LJ, Reilly JL, Bishop JR, Sweeney JA, et al. Correlation between DNA methylation and gene expression in the brains of patients with bipolar disorder and schizophrenia. Bipolar Disord. 2014;16(8):790–9. doi:10.1111/bdi.12255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu J, Chen J, Ehrlich S, Walton E, White T, Perrone-Bizzozero N, et al. Methylation patterns in whole blood correlate with symptoms in schizophrenia patients. Schizophr Bull. 2014;40(4):769–76. doi:10.1093/schbul/sbt080.

    Article  PubMed  Google Scholar 

  61. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci. 2015;18(2):199–209. doi:10.1038/nn.3922. http://www.nature.com/neuro/journal/v18/n2/abs/nn.3922.html—Supplementary-information

    Article  Google Scholar 

  62. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2(3):258–70. doi:10.1016/S2215-0366(14)00122-9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Benros ME, Nielsen PR, Nordentoft M, Eaton WW, Dalton SO, Mortensen PB. Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am J Psychiatry. 2011;168(12):1303–10. doi:10.1176/appi.ajp.2011.11030516.

    Article  PubMed  Google Scholar 

  64. Jaffe AE, Gao Y, Deep-Soboslay A, Tao R, Hyde TM, Weinberger DR, et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat Neurosci. 2016;19(1):40–7. doi:10.1038/nn.4181.

    Article  CAS  PubMed  Google Scholar 

  65. Hannon E, Spiers H, Viana J, Pidsley R, Burrage J, Murphy TM, et al. Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. Nat Neurosci. 2016;19(1):48–54. doi:10.1038/nn.4182.

    Article  CAS  PubMed  Google Scholar 

  66. Zhao H, Xu J, Pang L, Zhang Y, Fan H, Liu L, et al. Genome-wide DNA methylome reveals the dysfunction of intronic microRNAs in major psychosis. BMC Med Genomics. 2015;8(1):62. doi:10.1186/s12920-015-0139-4.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bönsch D, Wunschel M, Lenz B, Janssen G, Weisbrod M, Sauer H. Methylation matters? Decreased methylation status of genomic DNA in the blood of schizophrenic twins. Psychiatry Res. 2012;198(3):533–7. doi:10.1016/j.psychres.2011.09.004.

    Article  PubMed  Google Scholar 

  68. Bromberg A, Levine J, Nemetz B, Belmaker RH, Agam G. No association between global leukocyte DNA methylation and homocysteine levels in schizophrenia patients. Schizophr Res. 2008;101(1–3):50–7. doi:10.1016/j.schres.2008.01.009.

    Article  CAS  PubMed  Google Scholar 

  69. Kumar G, Clark SL, McClay JL, Shabalin AA, Adkins DE, Xie L, et al. Refinement of schizophrenia GWAS loci using methylome-wide association data. Hum Genet. 2015;134(1):77–87. doi:10.1007/s00439-014-1494-5.

    Article  CAS  PubMed  Google Scholar 

  70. Castellani CA, Melka MG, Gui JL, O’Reilly RL, Singh SM. Integration of DNA sequence and DNA methylation changes in monozygotic twin pairs discordant for schizophrenia. Schizophr Res. 2015;169(1–3):433–40. doi:10.1016/j.schres.2015.09.021.

    Article  CAS  PubMed  Google Scholar 

  71. Hoffmann A, Ziller M, Spengler D. The future is the past: methylation QTLs in schizophrenia. Genes (Basel). 2016;7(12) doi:10.3390/genes7120104.

  72. van Eijk KR, de Jong S, Strengman E, Buizer-Voskamp JE, Kahn RS, Boks MP, et al. Identification of schizophrenia-associated loci by combining DNA methylation and gene expression data from whole blood. Eur J Hum Genet. 2015;23(8):1106–10. doi:10.1038/ejhg.2014.245.

    Article  PubMed  Google Scholar 

  73. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86. doi:10.1186/1471-2105-13-86.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Guintivano J, Aryee MJ, Kaminsky ZA. A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics. 2013;8(3):290–302. doi:10.4161/epi.23924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grove TB, Burghardt KJ, Kraal A, Dougherty R, Taylor S, Ellingrod V. Oxytocin receptor (OXTR) methylation and cognition in psychotic disorders. Mol Neuropsychiatry. 2016;2(3):151–60. doi:10.1159/000448173.

    Article  CAS  PubMed  Google Scholar 

  76. Rubin LH, Connelly JJ, Reilly JL, Carter CS, Drogos LL, Pournajafi-Nazarloo H, et al. Sex and diagnosis-specific associations between dna methylation of the oxytocin receptor gene with emotion processing and temporal-limbic and prefrontal brain volumes in psychotic disorders. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1(2):141–51.

    Article  PubMed  Google Scholar 

  77. Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci. 2007;104(24):10164–9. doi:10.1073/pnas.0703806104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tamura Y, Kunugi H, Ohashi J, Hohjoh H. Epigenetic aberration of the human REELIN gene in psychiatric disorders. Mol Psychiatry. 2007;12(6):593–600. doi:10.1038/sj.mp.4001965.

    Article  CAS  Google Scholar 

  79. Ghadirivasfi M, Nohesara S, Ahmadkhaniha HR, Eskandari MR, Mostafavi S, Thiagalingam S, et al. Hypomethylation of the serotonin receptor type-2A Gene (HTR2A) at T102C polymorphic site in DNA derived from the saliva of patients with schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2011;156(5):536–45.

    Article  CAS  Google Scholar 

  80. Abdolmaleky HM, Pajouhanfar S, Faghankhani M, Joghataei MT, Mostafavi A, Thiagalingam S. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and Psychotic bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2015;168(8):687–96. doi:10.1002/ajmg.b.32361.

    Article  CAS  PubMed  Google Scholar 

  81. Chen Y, Zhang J, Zhang L, Shen Y, Xu Q. Effects of MAOA promoter methylation on susceptibility to paranoid schizophrenia. Hum Genet. 2012;131(7):1081–7. doi:10.1007/s00439-011-1131-5.

    Article  CAS  PubMed  Google Scholar 

  82. Iwamoto K, Bundo M, Yamada K, Takao H, Iwayama-Shigeno Y, Yoshikawa T, et al. DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. J Neurosci. 2005;25(22):5376–81. doi:10.1523/JNEUROSCI.0766-05.2005.

    Article  CAS  PubMed  Google Scholar 

  83. Numata S, Ye T, Herman M, Lipska BK. DNA methylation changes in the postmortem dorsolateral prefrontal cortex of patients with schizophrenia. Front Genet. 2014;5:280. doi:10.3389/fgene.2014.00280.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xiao Y, Camarillo C, Ping Y, Arana TB, Zhao H, Thompson PM, et al. The DNA methylome and transcriptome of different brain regions in schizophrenia and bipolar disorder. PLoS One. 2014;9(4):e95875. doi:10.1371/journal.pone.0095875.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter Kenis Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pries, LK., Gülöksüz, S., Kenis, G. (2017). DNA Methylation in Schizophrenia. In: Delgado-Morales, R. (eds) Neuroepigenomics in Aging and Disease. Advances in Experimental Medicine and Biology(), vol 978. Springer, Cham. https://doi.org/10.1007/978-3-319-53889-1_12

Download citation

Publish with us

Policies and ethics