Skip to main content

DNA Methylation in Major Depressive Disorder

  • Chapter
  • First Online:
Neuroepigenomics in Aging and Disease

Abstract

Epigenetic mechanisms regulate gene expression, influencing protein levels and ultimately shaping phenotypes during life. However, both stochastic epigenetic variations and environmental reprogramming of the epigenome might influence neurodevelopment and ageing, and this may contribute to the origins of mental ill-health. Studying the role of epigenetic mechanisms is challenging, as genotype-, tissue- and cell type-dependent epigenetic changes have to be taken into account, while the nature of mental disorders also poses significant challenges for linking them with biological profiles. In this chapter, we summarise the current evidence suggesting the role of DNA methylation as a key epigenetic mechanism in major depressive disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health. 2013;34:119–38. doi:10.1146/annurev-publhealth-031912-114409.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157(10):1552–62. doi:10.1176/appi.ajp.157.10.1552.

    Article  CAS  PubMed  Google Scholar 

  3. Duncan LE, Keller MC. A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. Am J Psychiatry. 2011;168(10):1041–9. doi:10.1176/appi.ajp.2011.11020191.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33:245–54. doi:10.1038/ng1089.

    Article  CAS  PubMed  Google Scholar 

  5. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12(3):342–8. doi:10.1038/nn.2270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7(8):847–54. doi:10.1038/nn1276.

    Article  CAS  PubMed  Google Scholar 

  7. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3(2):97–106.

    Article  PubMed  Google Scholar 

  8. Palma-Gudiel H, Cordova-Palomera A, Eixarch E, Deuschle M, Fananas L. Maternal psychosocial stress during pregnancy alters the epigenetic signature of the glucocorticoid receptor gene promoter in their offspring: a meta-analysis. Epigenetics. 2015;10(10):893–902. doi:10.1080/15592294.2015.1088630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tyrka AR, Parade SH, Welch ES, Ridout KK, Price LH, Marsit C, et al. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders. Transl Psychiatry. 2016;6(7):e848. doi:10.1038/tp.2016.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Denny WB, Valentine DL, Reynolds PD, Smith DF, Scammell JG. Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding. Endocrinology. 2000;141(11):4107–13. doi:10.1210/endo.141.11.7785.

    Article  CAS  PubMed  Google Scholar 

  11. Binder EB. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology. 2009;34(Suppl 1):S186–95. doi:10.1016/j.psyneuen.2009.05.021.

    Article  CAS  PubMed  Google Scholar 

  12. Zannas AS, Binder EB. Gene-environment interactions at the FKBP5 locus: sensitive periods, mechanisms and pleiotropism. Genes Brain Behav. 2014;13(1):25–37. doi:10.1111/gbb.12104.

    Article  CAS  PubMed  Google Scholar 

  13. Klengel T, Binder EB. Gene × environment interactions in the prediction of response to antidepressant treatment. Int J Neuropsychopharmacol. 2013;16(3):701–11. doi:10.1017/S1461145712001459.

    Article  CAS  PubMed  Google Scholar 

  14. Duman RS. Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromol Med. 2004;5(1):11–25. doi:10.1385/NMM:5:1:011.

    Article  CAS  Google Scholar 

  15. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology. 1998;37(12):1553–61.

    Article  CAS  PubMed  Google Scholar 

  16. Lee BH, Kim YK. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig. 2010;7(4):231–5. doi:10.4306/pi.2010.7.4.231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boulle F, van den Hove DL, Jakob SB, Rutten BP, Hamon M, van Os J, et al. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol Psychiatry. 2012;17(6):584–96. doi:10.1038/mp.2011.107.

    Article  CAS  PubMed  Google Scholar 

  18. Januar V, Ancelin ML, Ritchie K, Saffery R, Ryan J. BDNF promoter methylation and genetic variation in late-life depression. Transl Psychiatry. 2015;5:e619. doi:10.1038/tp.2015.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keller S, Sarchiapone M, Zarrilli F, Videtic A, Ferraro A, Carli V, et al. Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch Gen Psychiatry. 2010;67(3):258–67. doi:10.1001/archgenpsychiatry.2010.9.

    Article  CAS  PubMed  Google Scholar 

  20. Fuchikami M, Morinobu S, Segawa M, Okamoto Y, Yamawaki S, Ozaki N, et al. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One. 2011;6(8):e23881. doi:10.1371/journal.pone.0023881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Na KS, Won E, Kang J, Chang HS, Yoon HK, Tae WS, et al. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder. Sci Rep. 2016;6:21089. doi:10.1038/srep21089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choi S, Han KM, Won E, Yoon BJ, Lee MS, Ham BJ. Association of brain-derived neurotrophic factor DNA methylation and reduced white matter integrity in the anterior corona radiata in major depression. J Affect Disord. 2015;172:74–80. doi:10.1016/j.jad.2014.09.042.

    Article  CAS  PubMed  Google Scholar 

  23. Kang HJ, Kim JM, Lee JY, Kim SY, Bae KY, Kim SW, et al. BDNF promoter methylation and suicidal behavior in depressive patients. J Affect Disord. 2013;151(2):679–85.

    Google Scholar 

  24. Kang HJ, Kim JM, Bae KY, Kim SW, Shin IS, Kim HR, et al. Longitudinal associations between BDNF promoter methylation and late-life depression. Neurobiol Aging. 2015;36(4):1764.e1–7. doi:10.1016/j.neurobiolaging.2014.12.035.

    Article  CAS  Google Scholar 

  25. Kang HJ, Kim JM, Kim SY, Kim SW, Shin IS, Kim HR, et al. A longitudinal study of BDNF promoter methylation and depression in breast cancer. Psychiatry Investig. 2015;12(4):523–31. doi:10.4306/pi.2015.12.4.523.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kleimann A, Kotsiari A, Sperling W, Groschl M, Heberlein A, Kahl KG, et al. BDNF serum levels and promoter methylation of BDNF exon I, IV and VI in depressed patients receiving electroconvulsive therapy. J Neural Transm (Vienna). 2015;122(6):925–8. doi:10.1007/s00702-014-1336-6.

    Article  CAS  PubMed  Google Scholar 

  27. Tadic A, Muller-Engling L, Schlicht KF, Kotsiari A, Dreimuller N, Kleimann A, et al. Methylation of the promoter of brain-derived neurotrophic factor exon IV and antidepressant response in major depression. Mol Psychiatry. 2014;19(3):281–3. doi:10.1038/mp.2013.58.

    Article  CAS  PubMed  Google Scholar 

  28. Owens MJ, Nemeroff CB. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem. 1994;40(2):288–95.

    CAS  PubMed  Google Scholar 

  29. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301(5631):386–9. doi:10.1126/science.1083968.

    Article  CAS  PubMed  Google Scholar 

  30. Philibert RA, Sandhu H, Hollenbeck N, Gunter T, Adams W, Madan A. The relationship of 5HTT (SLC6A4) methylation and genotype on mRNA expression and liability to major depression and alcohol dependence in subjects from the Iowa Adoption Studies. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(5):543–9. doi:10.1002/ajmg.b.30657.

    Article  CAS  PubMed  Google Scholar 

  31. Olsson CA, Foley DL, Parkinson-Bates M, Byrnes G, McKenzie M, Patton GC, et al. Prospects for epigenetic research within cohort studies of psychological disorder: a pilot investigation of a peripheral cell marker of epigenetic risk for depression. Biol Psychol. 2010;83(2):159–65. doi:10.1016/j.biopsycho.2009.12.003.

    Article  CAS  PubMed  Google Scholar 

  32. Kang HJ, Kim JM, Stewart R, Kim SY, Bae KY, Kim SW, et al. Association of SLC6A4 methylation with early adversity, characteristics and outcomes in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:23–8. doi:10.1016/j.pnpbp.2013.01.006.

    Article  CAS  PubMed  Google Scholar 

  33. Domschke K, Tidow N, Schwarte K, Deckert J, Lesch KP, Arolt V, et al. Serotonin transporter gene hypomethylation predicts impaired antidepressant treatment response. Int J Neuropsychopharmacol. 2014;17(8):1167–76. doi:10.1017/S146114571400039x.

    Article  CAS  PubMed  Google Scholar 

  34. Wang D, Szyf M, Benkelfat C, Provencal N, Turecki G, Caramaschi D, et al. Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression. PLoS One. 2012;7(6):e39501. doi:10.1371/journal.pone.0039501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dannlowski U, Kugel H, Redlich R, Halik A, Schneider I, Opel N, et al. Serotonin transporter gene methylation is associated with hippocampal gray matter volume. Hum Brain Mapp. 2014;35(11):5356–67. doi:10.1002/hbm.22555.

    Article  PubMed  Google Scholar 

  36. Booij L, Szyf M, Carballedo A, Frey EM, Morris D, Dymov S, et al. DNA methylation of the serotonin transporter gene in peripheral cells and stress-related changes in hippocampal volume: a study in depressed patients and healthy controls. PLoS One. 2015;10(3):e0119061.

    Google Scholar 

  37. Sabunciyan S, Aryee MJ, Irizarry RA, Rongione M, Webster MJ, Kaufman WE, et al. Genome-wide DNA methylation scan in major depressive disorder. PLoS One. 2012;7(4):e34451. doi:10.1371/journal.pone.0034451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nagy C, Suderman M, Yang J, Szyf M, Mechawar N, Ernst C, et al. Astrocytic abnormalities and global DNA methylation patterns in depression and suicide. Mol Psychiatry. 2015;20(3):320–8. doi:10.1038/mp.2014.21.

    Article  CAS  PubMed  Google Scholar 

  39. Uddin M, Koenen KC, Aiello AE, Wildman DE, de los Santos R, Galea S. Epigenetic and inflammatory marker profiles associated with depression in a community-based epidemiologic sample. Psychol Med. 2011;41(5):997–1007. doi:10.1017/S0033291710001674.

    Article  CAS  PubMed  Google Scholar 

  40. Numata S, Ishii K, Tajima A, Iga J, Kinoshita M, Watanabe S, et al. Blood diagnostic biomarkers for major depressive disorder using multiplex DNA methylation profiles: discovery and validation. Epigenetics. 2015;10(2):135–41. doi:10.1080/15592294.2014.1003743.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Weder N, Zhang H, Jensen K, Yang BZ, Simen A, Jackowski A, et al. Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. J Am Acad Child Adolesc Psychiatry. 2014;53(4):417–24.e5. doi:10.1016/j.jaac.2013.12.025.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Murphy TM, Crawford B, Dempster EL, Hannon E, Burrage J, Turecki G, et al. Methylomic profiling of cortex samples from completed suicide cases implicates a role for PSORS1C3 in major depression and suicide. Transl Psychiatry. 2017;7(1):e989. doi:10.1038/tp.2016.249.

    Article  CAS  PubMed  Google Scholar 

  43. Dempster EL, Wong CC, Lester KJ, Burrage J, Gregory AM, Mill J, et al. Genome-wide methylomic analysis of monozygotic twins discordant for adolescent depression. Biol Psychiatry. 2014;76(12):977–83. doi:10.1016/j.biopsych.2014.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cordova-Palomera A, Fatjo-Vilas M, Gasto C, Navarro V, Krebs MO, Fananas L. Genome-wide methylation study on depression: differential methylation and variable methylation in monozygotic twins. Transl Psychiatry. 2015;5:e557. doi:10.1038/tp.2015.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davies MN, Krause L, Bell JT, Gao F, Ward KJ, Wu HL, et al. Hypermethylation in the ZBTB20 gene is associated with major depressive disorder. Genome Biol. 2014;15(4):R56. doi:10.1186/gb-2014-15-4-r56.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zimmermann N, Zschocke J, Perisic T, Yu S, Holsboer F, Rein T. Antidepressants inhibit DNA methyltransferase 1 through reducing G9a levels. Biochem J. 2012;448(1):93–102. doi:10.1042/BJ20120674.

    Article  CAS  PubMed  Google Scholar 

  47. Detich N, Bovenzi V, Szyf M. Valproate induces replication-independent active DNA demethylation. J Biol Chem. 2003;278(30):27586–92. doi:10.1074/jbc.M303740200.

    Article  CAS  PubMed  Google Scholar 

  48. Schroeder JW, Smith AK, Brennan PA, Conneely KN, Kilaru V, Knight BT, et al. DNA methylation in neonates born to women receiving psychiatric care. Epigenetics. 2012;7(4):409–14. doi:10.4161/epi.19551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gurnot C, Martin-Subero I, Mah SM, Weikum W, Goodman SJ, Brain U, et al. Prenatal antidepressant exposure associated with CYP2E1 DNA methylation change in neonates. Epigenetics. 2015;10(5):361–72. doi:10.1080/15592294.2015.1026031.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhao JY, Goldberg J, Bremner JD, Vaccarino V. Association between promoter methylation of serotonin transporter gene and depressive symptoms: a monozygotic twin study. Psychosom Med. 2013;75(6):523–9. doi:10.1097/PSY.0b013e3182924cf4.

    Article  CAS  PubMed  Google Scholar 

  51. Oh G, Wang SC, Pal M, Chen ZF, Khare T, Tochigi M, et al. DNA modification study of major depressive disorder: beyond locus-by-locus comparisons. Biol Psychiatry. 2015;77(3):246–55. doi:10.1016/j.biopsych.2014.06.016.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Pishva M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pishva, E., Rutten, B.P.F., van den Hove, D. (2017). DNA Methylation in Major Depressive Disorder. In: Delgado-Morales, R. (eds) Neuroepigenomics in Aging and Disease. Advances in Experimental Medicine and Biology(), vol 978. Springer, Cham. https://doi.org/10.1007/978-3-319-53889-1_10

Download citation

Publish with us

Policies and ethics