Skip to main content

Novel Imaging Techniques and Neuroradiologic Imaging

  • Chapter
  • First Online:
Homonymous Visual Field Defects

Abstract

The opportunity to apply various neuroimaging techniques to study the visual system has had a strong impact on the clinical assessment and management of visual pathologies. Advancements in the technology and the methodology of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), allow obtaining noninvasive structural, functional, and physiological information on the visual pathway. FMRI and DTI allow the noninvasive investigation of cognitive processes (fMRI), provide models of brain connectivity, and reveal abnormalities in white matter fiber structure (DTI). Combining these techniques with standard ophthalmology tests provides the clinicians with a powerful tool for the assessment and management of patients with visual field defects such as hemianopia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kollias SS. Investigations of the human visual system using functional magnetic resonance imaging (FMRI). Eur J Radiol. 2004;49(1):64–75.

    Article  PubMed  Google Scholar 

  2. Kaeser P-F, Ghika J, Borruat F-X. Visual signs and symptoms in patients with the visual variant of Alzheimer disease. BMC Opthalmol. 2015;15(1):65.

    Article  Google Scholar 

  3. Trobe JD. The neurology of vision. 1st ed. New York: Oxford University Press; 2001.

    Google Scholar 

  4. Jacobs D, Galetta S. Neuro-ophthalmology for neuroradiologists. Am J Neuroradiol. 2007;28(1):3–8.

    CAS  PubMed  Google Scholar 

  5. Carolyn Asbury PD. Brain imaging technologies and their applications in neuroscience: the dana foundation. 2011. [cited 8 Dec 2015].

    Google Scholar 

  6. Huettel SA. fMRI: BOLD Contrast. In: Squire LR, editor. Encyclopedia of neuroscience. Oxford: Academic Press; 2009. p. 273–81.

    Chapter  Google Scholar 

  7. Prins D, Hanekamp S, Cornelissen FW. Structural brain MRI studies in eye diseases: are they clinically relevant? A review of current findings. Acta Ophthalmol. 2016;94(2):113–21.

    Article  PubMed  Google Scholar 

  8. De Champfleur NM, De Champfleur SM, Galanaud D, Leboucq N, Bonafé A. Imaging of the optic chiasm and retrochiasmal visual pathways. Diagn Interv Imaging. 2013;94(10):957–71.

    Article  Google Scholar 

  9. Horton JC. What is the evaluation for a homonymous hemianopia? In: Lee AG, Kline L, Brazis PW, editors. Curbside consultations in neuro-ophthalmology. Thorofare: Slack; 2009. p. 139–44.

    Google Scholar 

  10. Vachalová I, Gindl V, Heckmann JG. Acute inferior homonymous quandrantanopia in a 71-year-old woman. J Clin Neurosci. 2014;21(4):683–5.

    Article  PubMed  Google Scholar 

  11. Kollias S. Parcelation of the white matter using DTI: insights into the functional connectivity of the brain. Neuroradiol J. 2009;22(Suppl 1):74–84.

    Article  Google Scholar 

  12. Reinges MH, Schoth F, Coenen VA, Krings T. Imaging of postthalamic visual fiber tracts by anisotropic diffusion weighted MRI and diffusion tensor imaging: principles and applications. Eur J Radiol. 2004;49(2):91–104.

    Article  PubMed  Google Scholar 

  13. Hofer S, Karaus A, Frahm J. Reconstruction and dissection of the entire human visual pathway using diffusion tensor MRI. Front Neuroanat. 2010;4:15. doi:10.3389/fnana.2010.00015.

    PubMed  PubMed Central  Google Scholar 

  14. X-f T, Wang Z-Q, W-q G, Q-j J, Shi Z-R. A new study on diffusion tensor imaging of the whole visual pathway fiber bundle and clinical application. Chin Med J (Engl). 2009;122(2):178–82.

    Google Scholar 

  15. Coenen V, Huber K, Krings T, Weidemann J, Gilsbach J, Rohde V. Diffusion-weighted imaging-guided resection of intracerebral lesions involving the optic radiation. Neurosurg Rev. 2005;28(3):188–95.

    Article  CAS  PubMed  Google Scholar 

  16. Klistorner A, Vootakuru N, Wang C, Yiannikas C, Graham SL, Parratt J, et al. Decoding diffusivity in multiple sclerosis: analysis of optic radiation lesional and non-lesional white matter. PLoS One. 2015;10(3):e0122114.

    Article  PubMed  PubMed Central  Google Scholar 

  17. McNulty J, Lonergan R, Bannigan J, O’Laoide R, Rainford L, Tubridy N. Visualisation of the medial longitudinal fasciculus using fibre tractography in multiple sclerosis patients with internuclear ophthalmoplegia. Ir J Med Sci. 2016;185(2):393–402.

    Article  CAS  PubMed  Google Scholar 

  18. Yeo SS, Kim SH, Kim OL, Kim M-S, Jang SH. Optic radiation injury in a patient with traumatic brain injury. Brain Inj. 2012;26(6):891–5.

    Article  PubMed  Google Scholar 

  19. Romero RS, Gutierrez I, Wang E, Reder AT, Bhatti MT, Bernard JT, et al. Homonymous hemimacular thinning: a unique presentation of optic tract injury in neuromyelitis optica. J Neuroophthalmol. 2012;32(2):150–3.

    Article  PubMed  Google Scholar 

  20. Cui Z, Ling Z, Pan L, Song H, Chen X, Shi W, et al. Optic radiation mapping reduces the risk of visual field deficits in anterior temporal lobe resection. Int J Clin Exp Med. 2015;8(8):14283.

    PubMed  PubMed Central  Google Scholar 

  21. Powell H, Parker G, Alexander D, Symms M, Boulby P, Wheeler-Kingshott C, et al. MR tractography predicts visual field defects following temporal lobe resection. Neurology. 2005;65(4):596–9.

    Article  CAS  PubMed  Google Scholar 

  22. Staempfli P, Rienmueller A, Reischauer C, Valavanis A, Boesiger P, Kollias S. Reconstruction of the human visual system based on DTI fiber tracking. J Magn Reson Imaging. 2007;26(4):886–93.

    Article  PubMed  Google Scholar 

  23. Khanna N, Altmeyer W, Zhuo J, Steven A. Functional neuroimaging: fundamental principles and clinical applications. Neuroradiol J. 2015;28(2):87–96.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bick AS, Mayer A, Levin N. From research to clinical practice: implementation of functional magnetic imaging and white matter tractography in the clinical environment. J Neurol Sci. 2012;312(1):158–65.

    Article  PubMed  Google Scholar 

  25. Miki A, Haselgrove JC, Liu GT. Functional magnetic resonance imaging and its clinical utility in patients with visual disturbances. Surv Ophthalmol. 2002;47(6):562–79.

    Article  PubMed  Google Scholar 

  26. Miki A, Nakajima T, Fujita M, Takagi M, Abe H. Functional magnetic resonance imaging in homonymous hemianopsia. Am J Ophthalmol. 1996;121(3):258–66.

    Article  CAS  PubMed  Google Scholar 

  27. Millington RS, Ajina S, Bridge H. Novel brain imaging approaches to understand acquired and congenital neuro-ophthalmological conditions. Curr Opin Neurol. 2014;27(1):92.

    Article  PubMed  PubMed Central  Google Scholar 

  28. DeYoe EA, Raut RV. Visual mapping using blood oxygen level dependent functional magnetic resonance imaging. Neuroimaging Clin N Am. 2014;24(4):573–84.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Roy CS, Sherrington CS. On the regulation of the blood-supply of the brain. J Physiol. 1890;11(1–2):85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta. 1982;714(2):265–70.

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa S, Lee T-M, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–7.

    Article  CAS  PubMed  Google Scholar 

  33. DeYoe EA, Ulmer JL, Mueller WM, Sabsevitz DS, Reitsma DC, Pillai JJ. Imaging of the functional and dysfunctional visual system. Semin Ultrasound CT MR. 2015;36(3):234–48.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kollias SS, Landau K, Khan N, Golay X, Bernays R, Yonekawa Y, et al. Functional evaluation using magnetic resonance imaging of the visual cortex in patients with retrochiasmatic lesions. J Neurosurg. 1998;89(5):780–90.

    Article  CAS  PubMed  Google Scholar 

  35. von dem Hagen EA, Hoffmann MB, Morland AB. Identifying human albinism: a comparison of VEP and fMRI. Invest Ophthalmol Vis Sci. 2008;49(1):238–49.

    Article  Google Scholar 

  36. Reitsma DC, Mathis J, Ulmer JL, Mueller W, Maciejewski MJ, DeYoe EA. Atypical retinotopic organization of visual cortex in patients with central brain damage: congenital and adult onset. J Neurosci. 2013;33(32):13010–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoffmann MB, Kaule FR, Levin N, Masuda Y, Kumar A, Gottlob I, et al. Plasticity and stability of the visual system in human achiasma. Neuron. 2012;75(3):393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kok P, Bains LJ, van Mourik T, Norris DG, de Lange FP. Selective activation of the deep layers of the human primary visual cortex by top-down feedback. Curr Biol. 2016;26(3):371–6.

    Article  CAS  PubMed  Google Scholar 

  39. Ajina S, Rees G, Kennard C, Bridge H. Abnormal contrast responses in the extrastriate cortex of blindsight patients. J Neurosci. 2015;35(21):8201–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gau M, Nestler A, Dietrich J, Faude F. A retrosellar arachnoid cyst as a rare cause of homonymous hemianopsia. Klin Monbl Augenheilkd. 1998;212(6):480–1. [Article in German].

    Article  CAS  PubMed  Google Scholar 

  41. Polonara G, Salvolini S, Fabri M, Mascioli G, Cavola GL, Neri P, et al. Unilateral visual loss due to ischaemic injury in the right calcarine region: a functional magnetic resonance imaging and diffusion tension imaging follow-up study. Int Ophthalmol. 2011;31(2):129–34.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros Kollias MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aldusary, N., Hartog-Keisker, B., Kollias, S. (2017). Novel Imaging Techniques and Neuroradiologic Imaging. In: Skorkovská, K. (eds) Homonymous Visual Field Defects. Springer, Cham. https://doi.org/10.1007/978-3-319-52284-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52284-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52282-1

  • Online ISBN: 978-3-319-52284-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics