Skip to main content

The Gut Microbiota and their Metabolites: Potential Implications for the Host Epigenome

  • Chapter
  • First Online:
Microbiota of the Human Body

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 902))

Abstract

The gut microbiota represents a metabolically active biomass of up to 2 kg in adult humans. Microbiota-derived molecules significantly contribute to the host metabolism. Large amounts of bacterial metabolites are taken up by the host and are subsequently utilized by the human body. For instance, short chain fatty acids produced by the gut microbiota are a major energy source of humans.

It is widely accepted that microbiota-derived metabolites are used as fuel for beta-oxidation (short chain fatty acids) and participate in many metabolic processes (vitamins, such as folic acid). Apart from these direct metabolic effects, it also becomes more and more evident that these metabolites can interact with the mammalian epigenetic machinery. By interacting with histones and DNA they may be able to manipulate the host’s chromatin state and functionality and hence its physiology and health.

In this chapter, we summarize the current knowledge on possible interactions of different bacterial metabolites with the mammalian epigenetic machinery, mostly based on in vitro data. We discuss the putative impact on chromatin marks, for example histone modifications and DNA methylation. Subsequently, we speculate about possible beneficial and adverse consequences for the epigenome, the physiology and health of the host, as well as plausible future applications of this knowledge for in vivo translation to support personal health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afanas’ev I (2014) New nucleophilic mechanisms of ros-dependent epigenetic modifications: comparison of aging and cancer. Aging Dis 5(1):52–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Albert MJ, Mathan VI, Baker SJ (1980) Vitamin B12 synthesis by human small intestinal bacteria. Nature 283(5749):781–782

    Article  CAS  PubMed  Google Scholar 

  • Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 23(8):853–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angrisano T et al (2010) LPS-induced IL-8 activation in human intestinal epithelial cells is accompanied by specific histone H3 acetylation and methylation changes. BMC Microbiol 10:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Arenz S et al (2004) Breast-feeding and childhood obesity – a systematic review. Int J Obes Relat Metab Disord 28(10):1247–1256

    Article  CAS  PubMed  Google Scholar 

  • Avalos JL, Bever KM, Wolberger C (2005) Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell 17(6):855–868

    Article  CAS  PubMed  Google Scholar 

  • Beloborodova N et al (2012) Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils. J Biomed Sci 19:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):669–681

    Article  CAS  PubMed  Google Scholar 

  • Blottiere HM et al (2003) Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc Nutr Soc 62(1):101–106

    Article  CAS  PubMed  Google Scholar 

  • Bosviel R et al (2012) Epigenetic modulation of BRCA1 and BRCA2 gene expression by equol in breast cancer cell lines. Br J Nutr 108(7):1187–1193

    Article  CAS  PubMed  Google Scholar 

  • Cai L et al (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42(4):426–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canani RB et al (2011) Epigenetic mechanisms elicited by nutrition in early life. Nutr Res Rev 24(2):198–205

    Article  CAS  PubMed  Google Scholar 

  • Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304

    Article  CAS  PubMed  Google Scholar 

  • Cell Signaling Technology. Histone modification table. Available from: http://www.cellsignal.com/contents/resources-reference-tables/histone-modification-table/science-tables-histone

  • Cho HJ et al (2006) Trans-10, cis-12, not cis-9, trans-11, conjugated linoleic acid inhibits G1-S progression in HT-29 human colon cancer cells. J Nutr 136(4):893–898

    CAS  PubMed  Google Scholar 

  • Claesson MJ et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184

    Article  CAS  PubMed  Google Scholar 

  • Cook SI, Sellin JH (1998) Review article: short chain fatty acids in health and disease. Aliment Pharmacol Ther 12(6):499–507

    Article  CAS  PubMed  Google Scholar 

  • Cummings JH (1984) Microbial digestion of complex carbohydrates in man. Proc Nutr Soc 43(1):35–44

    Article  CAS  PubMed  Google Scholar 

  • Cummings JH, Englyst HN (1987) Fermentation in the human large intestine and the available substrates. Am J Clin Nutr 45(5 Suppl):1243–1255

    CAS  PubMed  Google Scholar 

  • Cummings JH, Macfarlane GT (1997) Colonic microflora: nutrition and health. Nutrition 13(5):476–478

    Article  CAS  PubMed  Google Scholar 

  • David LA et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133(7 Suppl):2485S–2493S

    CAS  PubMed  Google Scholar 

  • Denu JM (2005) Vitamin B3 and sirtuin function. Trends Biochem Sci 30(9):479–483

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Bello MG et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107(26):11971–11975

    Article  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Salas P et al (2013) DNA methylation potential: dietary intake and blood concentrations of one-carbon metabolites and cofactors in rural African women. Am J Clin Nutr 97(6):1217–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumas ME et al (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A 103(33):12511–12516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan SH et al (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 32(11):1720–1724

    Article  CAS  Google Scholar 

  • Hassan YI, Zempleni J (2008) A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase. Nutr Rev 66(12):721–725

    Article  PubMed  Google Scholar 

  • Heijmans BT et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105(44):17046–17049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann A, Goyal R, Jeltsch A (2004) The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279(46):48350–48359

    Article  CAS  PubMed  Google Scholar 

  • Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6(Suppl 1):S43–S45

    Article  PubMed  Google Scholar 

  • Hou H, Yu H (2010) Structural insights into histone lysine demethylation. Curr Opin Struct Biol 20(6):739–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  CAS  PubMed  Google Scholar 

  • Jiang S et al (2012) Cross regulation of sirtuin 1, AMPK, and PPARgamma in conjugated linoleic acid treated adipocytes. PLoS ONE 7(11), e48874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Chillaron JC et al (2012) The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94(11):2242–2263

    Article  CAS  PubMed  Google Scholar 

  • Jumpertz R et al (2011) Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94(1):58–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalhan SC (2013) One-carbon metabolism, fetal growth and long-term consequences. Nestle Nutr Inst Work Ser 74:127–138

    Article  Google Scholar 

  • Kanai Y, Hirohashi S (2007) Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state. Carcinogenesis 28(12):2434–2442

    Article  CAS  PubMed  Google Scholar 

  • Lal G et al (2011) Distinct inflammatory signals have physiologically divergent effects on epigenetic regulation of Foxp3 expression and Treg function. Am J Transplant 11(2):203–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latham T et al (2012) Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res 40(11):4794–4803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Chatelier E et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546

    Article  PubMed  Google Scholar 

  • Lea MA, Tulsyan N (1995) Discordant effects of butyrate analogues on erythroleukemia cell proliferation, differentiation and histone deacetylase. Anticancer Res 15(3):879–883

    CAS  PubMed  Google Scholar 

  • Lea MA et al (2004) Induction of histone acetylation and inhibition of growth by phenyl alkanoic acids and structurally related molecules. Cancer Chemother Pharmacol 54(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Ley RE et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023

    Article  CAS  PubMed  Google Scholar 

  • Li L et al (2013) Brg1-dependent epigenetic control of vascular smooth muscle cell proliferation by hydrogen sulfide. Biochim Biophys Acta 1833(6):1347–1355

    Article  CAS  PubMed  Google Scholar 

  • Lightfoot YL et al (2013) Targeting aberrant colon cancer-specific DNA methylation with lipoteichoic acid-deficient Lactobacillus acidophilus. Gut Microbes 4(1):84–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Ly A et al (2011) Effect of maternal and postweaning folic acid supplementation on mammary tumor risk in the offspring. Cancer Res 71(3):988–997

    Article  CAS  PubMed  Google Scholar 

  • Marmorstein R (2001) Protein modules that manipulate histone tails for chromatin regulation. Nat Rev Mol Cell Biol 2(6):422–432

    Article  CAS  PubMed  Google Scholar 

  • McBurney MI, Thompson LU (1990) Fermentative characteristics of cereal brans and vegetable fibers. Nutr Cancer 13(4):271–280

    Article  CAS  PubMed  Google Scholar 

  • McHardy IH et al (2013) Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiomed 1(1):17

    Article  Google Scholar 

  • Mischke M, Plosch T (2013) More than just a gut instinct-the potential interplay between a baby’s nutrition, its gut microbiome, and the epigenome. Am J Physiol Regul Integr Comp Physiol 304(12):R1065–R1069

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T et al (2012) Impaired coenzyme A synthesis in fission yeast causes defective mitosis, quiescence-exit failure, histone hypoacetylation and fragile DNA. Open Biol 2(9):120117

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Caro J et al (1986) Modulation of thyroid hormone nuclear receptors by short-chain fatty acids in glial C6 cells. Role of histone acetylation. J Biol Chem 261(30):13997–14004

    CAS  PubMed  Google Scholar 

  • Parks BW et al (2013) Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab 17(1):141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plass C et al (2013) Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet 14(11):765–780

    Article  CAS  PubMed  Google Scholar 

  • Rajendran P et al (2011) Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol 46(3):181–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramotar K et al (1984) Production of menaquinones by intestinal anaerobes. J Infect Dis 150(2):213–218

    Article  CAS  PubMed  Google Scholar 

  • Remely M et al (2013) Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 537(1):85–92

    Article  PubMed  Google Scholar 

  • Ridaura VK et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214

    Article  PubMed  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rueda-Clausen CF, Morton JS, Davidge ST (2011) The early origins of cardiovascular health and disease: who, when, and how. Semin Reprod Med 29(3):197–210

    Article  PubMed  Google Scholar 

  • Schaible TD et al (2011) Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes. Hum Mol Genet 20(9):1687–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwiertz A et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18(1):190–195

    Article  Google Scholar 

  • Sealy L, Chalkley R (1978) The effect of sodium butyrate on histone modification. Cell 14(1):115–121

    Article  CAS  PubMed  Google Scholar 

  • Serino M et al (2012) Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61(4):543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharif J et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450(7171):908–912

    Article  CAS  PubMed  Google Scholar 

  • Sun CY, Chang SC, Wu MS (2012) Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int 81(7):640–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki-Mizushima Y et al (2002) Enhancement of NGF- and cholera toxin-induced neurite outgrowth by butyrate in PC12 cells. Brain Res 951(2):209–217

    Article  CAS  PubMed  Google Scholar 

  • Takenaga K (1986) Effect of butyric acid on lung-colonizing ability of cloned low-metastatic Lewis lung carcinoma cells. Cancer Res 46(3):1244–1249

    CAS  PubMed  Google Scholar 

  • Tazume S et al (1991) Effects of germfree status and food restriction on longevity and growth of mice. Jikken Dobutsu 40(4):517–522

    CAS  PubMed  Google Scholar 

  • Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249

    Article  CAS  PubMed  Google Scholar 

  • Vrieze A et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(4):913–916, e7

    Article  CAS  PubMed  Google Scholar 

  • Waldecker M et al (2008) Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem 19(9):587–593

    Article  CAS  PubMed  Google Scholar 

  • Wang Z et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L et al (2013) A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth. Nat Commun 4:2035

    PubMed  PubMed Central  Google Scholar 

  • Wang Z et al (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35(14):904–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterland RA et al (2010) Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 6(12), e1001252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worthley DL et al (2011) DNA methylation in the rectal mucosa is associated with crypt proliferation and fecal short-chain fatty acids. Dig Dis Sci 56(2):387–396

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156(1–2):45–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zempleni J et al (2008) Epigenetic regulation of chromatin structure and gene function by biotin: are biotin requirements being met? Nutr Rev 66(Suppl 1):S46–S48

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H et al (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106(7):2365–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang TY et al (2012) Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology 38(1):111–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Eline van der Beek, Sebastian Tims, Dr. Jan Knol and Dr. Sicco Scherjon for helpful comments and stimulating discussions and Charlotte Snethla for supporting the data compilation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Plösch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mischke, M., Plösch, T. (2016). The Gut Microbiota and their Metabolites: Potential Implications for the Host Epigenome. In: Schwiertz, A. (eds) Microbiota of the Human Body. Advances in Experimental Medicine and Biology, vol 902. Springer, Cham. https://doi.org/10.1007/978-3-319-31248-4_3

Download citation

Publish with us

Policies and ethics