Skip to main content

Systems Biology: Unravelling Molecular Complexity in Health and Disease

  • Chapter
  • First Online:
The Value of Systems and Complexity Sciences for Healthcare

Abstract

In November 2014, Georgetown University Medical Center and Medstar Institute for Innovation convened a conference related to “Systems and Complexity Sciences for Healthcare: a Conference on the Imperative for Systems Science in the twenty-first Century”. The symposium brought more than 100 biomedical researchers, medical educators, leaders and clinicians to deliberate the importance of understanding and incorporating biological system complexities into patient care. Such an approach provides tangible methods for breaking the bonds of traditional treatment and clinical management methods, towards truly personalized medicine, or cura personalis. Such a systems approach towards health, illness, and disease considers the inter-dependencies within and outside of a biological system and offers significant benefits towards improving clinical outcomes and quality of life. Despite substantial scientific evidence, however, the systems and complexity paradigm and its application to healthcare remains in its infancy. Herein, we present a summary of discussions and opinions of conference participants who collectively highlighted the tremendous opportunities of using such approaches, while recognizing the socio-economic, ethical, and organizational road-blocks that have prevented the widespread implementation of such a model for clinical research and patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hawe P. Lessons from complex interventions to improve health. Annu Rev Public Health. 2015;18(36):307–323.

    Article  Google Scholar 

  2. Ahmad S, Tejuja A, Newman KD, Zarychanski R, Seely AJ. Clinical review: a review and analysis of heart rate variability and the diagnosis and prognosis of infection. Crit Care. 2009;13(6):232.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Leykum LK, Lanham HJ, Pugh JA, Parchman M, Anderson RA, Crabtree BF, et al. Manifestations and implications of uncertainty for improving healthcare systems: an analysis of observational and interventional studies grounded in complexity science. Implement Sci. 2014;9(1):165.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gomes AP, Blenis J. A nexus for cellular homeostasis: the interplay between metabolic and signal transduction pathways. Curr Opin Biotechnol. 2015;34C:110–7.

    Article  Google Scholar 

  5. Schluesener JK, Zhu X, Schluesener HJ, Wang GW, Ao P. Key network approach reveals new insight into Alzheimer’s disease. IET Syst Biol. 2014;8(4):169–75.

    Article  PubMed  Google Scholar 

  6. Fiandaca MS, Mapstone ME, Cheema AK, Federoff HJ. The critical need for defining preclinical biomarkers in Alzheimer’s disease. Alzheimers Dement. 2014;10(3 Suppl):S196–212.

    Article  PubMed  Google Scholar 

  7. Sleimen-Malkoun R, Temprado JJ, Hong SL. Aging induced loss of complexity and dedifferentiation: consequences for coordination dynamics within and between brain, muscular and behavioral levels. Front Aging Neurosci. 2014;6:140.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hong SL. The dynamics of structural and functional complexity across the lifespan. Nonlinear Dyn Psychol Life Sci. 2007;11(2):219–34.

    Google Scholar 

  9. Guarinoni MG, Motta PC, Petrucci C, Lancia L. Complexity of care: a concept analysis. Ann Ig. 2014;26(3):226–36.

    CAS  PubMed  Google Scholar 

  10. Sturmberg JP. Emergent properties define the subjective nature of health and disease. J Public Health Policy. 2014;35(3):414–9.

    Article  PubMed  Google Scholar 

  11. Topolski S, Sturmberg J. Validation of a non-linear model of health. J Eval Clin Pract. 2014;20(6):1026–35.

    Article  PubMed  Google Scholar 

  12. Hood L, Auffray C. Participatory medicine: a driving force for revolutionizing healthcare. Genome Med. 2013;5(12):110.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Flores M, Glusman G, Brogaard K, Price ND, Hood L. P4 medicine: how systems medicine will transform the healthcare sector and society. Pers Med. 2013;10(6):565–76.

    Article  CAS  Google Scholar 

  14. Vogt H, Ulvestad E, Eriksen TE, Getz L. Getting personal: can systems medicine integrate scientific and humanistic conceptions of the patient? J Eval Clin Pract. 2014;20(6):942–52.

    Article  PubMed  Google Scholar 

  15. Tian Q, Price ND, Hood L. Systems cancer medicine: towards realization of predictive, preventive, personalized, and participatory (P4) medicine. J Intern Med. 2012;271(2):111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spiegel AM, Hawkins M. ‘Personalized medicine’ to identify genetic risks for type 2 diabetes and focus prevention: can it fulfill its promise? Health Aff (Millwood). 2012;31(1):43–9.

    Article  Google Scholar 

  17. Bielohuby M, Popp S, Bidlingmaier M. A guide for measurement of circulating metabolic hormones in rodents: Pitfalls during the pre-analytical phase. Mol Metab. 2012;1(1):47–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson CH, Gonzalez FJ. Challenges and opportunities of metabolomics. J Cell Physiol. 2012;227(8):2975–81.

    Article  CAS  PubMed  Google Scholar 

  19. Norman AW. Sunlight, season, skin pigmentation, vitamin D, and 25-hydroxyvitamin D: integral components of the vitamin D endocrine system. Am J Clin Nutr. 1998;67(6):1108–10.

    CAS  PubMed  Google Scholar 

  20. Lee S, Lenton E, Sexton L, Cooke I. The effect of age on the cyclical patterns of plasma LH, FSH, oestradiol and progesterone in women with regular menstrual cycles. Hum Reprod. 1988;3(7):851–5.

    CAS  PubMed  Google Scholar 

  21. Wallace M, Hashim Y-Y, Wingfield M, Culliton M, McAuliffe F, Gibney M, et al. Effects of menstrual cycle phase on metabolomic profiles in premenopausal women. Hum Reprod. 2010;25(4):949–56.

    Article  CAS  PubMed  Google Scholar 

  22. Katz FH, Romfh P, Smith JA. Diurnal variation of plasma aldosterone, cortisol and renin activity in supine man. J Clin Endocrinol Metab. 1975;40(1):125–34.

    Article  CAS  PubMed  Google Scholar 

  23. Sampson JN, Boca SM, Shu XO, Stolzenberg-Solomon RZ, Matthews CE, Hsing AW, et al. Metabolomics in epidemiology: sources of variability in metabolite measurements and implications. Cancer Epidemiol Biomarkers Prev. 2013;22(4):631–40.

    Google Scholar 

  24. Xiao Q, Moore SC, Boca SM, Matthews CE, Rothman N, Stolzenberg-Solomon RZ, et al. Sources of variability in metabolite measurements from urinary samples. PloS One. 2014;9(5):e95749.

    Google Scholar 

  25. Cheema AK, Pathak R, Zandkarimi F, Kaur P, Alkhalil L, Singh R, et al. Liver metabolomics reveals increased oxidative stress and fibrogenic potential in Gfrp transgenic mice in response to ionizing radiation. J Proteome Res. 2014;13(6):3065–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fiandaca MS, Federoff HJ. Using viral-mediated gene delivery to model Parkinson’s disease: do nonhuman primate investigations expand our understanding? Exp Neurol. 2014;256:117–25.

    Article  CAS  PubMed  Google Scholar 

  27. Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protocols. 2013;8(1):17–32.

    Article  CAS  PubMed  Google Scholar 

  28. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11(10):733–9.

    Article  CAS  PubMed  Google Scholar 

  29. Kreutz C, Timmer J. Systems biology: experimental design. FEBS J. 2009;276(4):923–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard J. Federoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheema, A.K., Fiandaca, M.S., Mapstone, M., Federoff, H.J. (2016). Systems Biology: Unravelling Molecular Complexity in Health and Disease. In: Sturmberg, J. (eds) The Value of Systems and Complexity Sciences for Healthcare. Springer, Cham. https://doi.org/10.1007/978-3-319-26221-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26221-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26219-2

  • Online ISBN: 978-3-319-26221-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics