Skip to main content

Fixed Effect and Random Effects Meta-Analysis

  • Chapter
Meta-Analysis with R

Part of the book series: Use R! ((USE R))

Abstract

In this chapter we describe the two main methods of meta-analysis, fixed effect model and random effects model, and how to perform the analysis in R. For both models the inverse variance method is introduced for estimation. The pros and cons of these methods in various contexts have been debated at length in the literature [9, 28, 29, 41], without any conclusive resolution. Here, we briefly describe each model, and how it is estimated in the R package meta [33, 34].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If you did not already install R package meta do so using R command install. packages("meta").

  2. 2.

    Note we could use a pooled estimate of the sample variance, but this assumes that the response variance is the same in the two groups which will not be true in general.

  3. 3.

    The parentheses are not mandatory to select Boner 1988; we use them only to make the R code more accessible.

  4. 4.

    The parentheses are mandatory to exclude Boner 1988 using the variables author and year.

  5. 5.

    R command: install.packages("metafor") .

  6. 6.

    R code to create the forest plot is given in the web-appendix.

  7. 7.

    We did not do this in the creation of R object mc1.

  8. 8.

    R function update is a generic function like print or summary.

References

  1. Agresti, A.: Categorical Data Analysis, 2nd edn. Wiley, New York (2002)

    Book  MATH  Google Scholar 

  2. Beyersmann, J., Allignol, A., Schumacher, M.: Competing Risks and Multistate Models with R. Springer, New York (2012)

    Book  MATH  Google Scholar 

  3. Cooper, H., Hedges, L.V. (eds.): The Handbook of Research Synthesis. Russell Sage Foundation, New York (1994)

    Google Scholar 

  4. Cornell, J.E., Mulrow, C.D., Localio, R., Stack, C.B., Meibohm, A.R., Guallar, E., Goodman, S.N.: Random-effects meta-analysis of inconsistent effects: a time for change. Ann. Intern. Med. 160(4), 267–270 (2014)

    Article  Google Scholar 

  5. Curtin, F., Altman, D.G., Elbourne, D.: Meta-analysis combining parallel and cross-over clinical trials. I: Continuous outcomes. Stat. Med. 21, 2131–2144 (2002)

    Google Scholar 

  6. Curtin, F., Elbourne, D., Altman, D.G.: Meta-analysis combining parallel and cross-over clinical trials. II: Binary outcomes. Stat. Med. 21, 2145–2159 (2002)

    Google Scholar 

  7. DerSimonian, R., Laird, N.: Meta-analysis in clinical trials. Control Clin. Trials 7, 177–188 (1986)

    Article  Google Scholar 

  8. Elbourne, D.R., Altman, D.G., Higgins, J.P.T., Curtin, F., Worthington, H.V., Vail, A.: Meta-analyses involving cross-over trials: methodological issues. Int. J. Epidemiol. 31, 140–149 (2002)

    Article  Google Scholar 

  9. Fleiss, J.L.: The statistical basis of meta-analysis. Stat. Methods Med. Res. 2, 121–145 (1993)

    Article  Google Scholar 

  10. Furukawa, T.A., McGuire, H., Barbui, C.: Low dosage tricyclic antidepressants for depression. Cochrane Database Syst. Rev. (3) (2003). Art. No. CD003197. doi:10.1002/14651858.CD003197

    Google Scholar 

  11. Greenland, S.: Invited commentary: a critical look at some popular meta-analytic methods. Am. J. Epidemiol. 140, 290–296 (1994)

    Google Scholar 

  12. Greenland, S., Longnecker, M.P.: Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am. J. Epidemiol. 135, 1301–1309 (1992)

    Google Scholar 

  13. Hartung, J.: An alternative method for meta-analysis. Biom. J. 41, 901–916 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hartung, J., Knapp, G.: A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat. Med. 20, 3875–3889 (2001)

    Article  Google Scholar 

  15. Hedges, L.V.: Distribution theory for glass’s estimator of effect size and related estimators. J. Educ. Behav. Stat. 6(2), 107–128 (1981)

    Article  Google Scholar 

  16. Hedges, L.V.: Estimation of effect size from a series of independent experiments. Psychol. Bull. 92(2), 490–499 (1982)

    Article  Google Scholar 

  17. Hedges, L.: A random effects model for effect sizes. Psychol. Bull. 93(2), 388–395 (1983)

    Article  Google Scholar 

  18. Hedges, L.V., Olkin, I.: Statistical Methods for Meta-Analysis. Academic, San Diego (1985)

    MATH  Google Scholar 

  19. Higgins, J.P., Green, S. (eds.): Cochrane Handbook for Systematic Reviews of Interventions – Version 5.1.0 [updated March 2011]. The Cochrane Collaboration. http://www.cochrane-handbook.org (2011)

  20. Higgins, J.P.T., Thompson, S.G.: Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002)

    Article  Google Scholar 

  21. Higgins, J.P., Thompson, S.G., Spiegelhalter, D.J.: A re-evaluation of random-effects meta-analysis. J. R. Stat. Soc. 172, 137–159 (2009)

    Article  MathSciNet  Google Scholar 

  22. Hunter, J.E., Schmidt, F.L.: Methods of Meta-Analysis: Correcting Error and Bias in Research Findings, 2nd edn. Sage, Thousand Oaks (2004)

    Google Scholar 

  23. Jones, B., Kenward, M.G.: Design and Analysis of Cross-Over Trials. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  24. Klein, J.P., Moeschberger, M.L.: Survival Analysis. Techniques for Censored and Truncated Data. Springer, New York (2005)

    MATH  Google Scholar 

  25. Knapp, G., Hartung, J.: Improved tests for a random effects meta-regression with a single covariate. Stat. Med. 22, 2693–2710 (2003)

    Article  Google Scholar 

  26. Parmar, M.K.B., Torri, V., Stewart, L.: Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat. Med. 17, 2815–2834 (1998)

    Article  Google Scholar 

  27. Paule, R., Mandel, J.: Consensus values and weighting factors. J. Res. Natl. Bur. Stand. 87(5), 377–385 (1982)

    Article  MATH  Google Scholar 

  28. Pocock, S.: Editorials. Stat. Methods Med. Res. 2, 117–119 (1993)

    Article  Google Scholar 

  29. Pocock, S.J.: Safety of drug-eluting stents: demystifying network meta-analysis. Lancet 370, 2099–2100 (2007)

    Article  Google Scholar 

  30. Poole, C., Greenland, S.: Random-effects meta-analysis are not always conservative. Am. J. Epidemiol. 150, 469–75 (1999)

    Article  Google Scholar 

  31. Poole, P.J., Black, P.N.: Mucolytic agents for chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. (3) (2006). Art. No. CD001287. doi:10.1002/14651858.CD001287.pub2

    Google Scholar 

  32. Rücker, G., Schwarzer, G., Carpenter, J.R., Schumacher, M.: Undue reliance on I 2 in assessing heterogeneity may mislead. BMC Med. Res. Methodol. 8, 79 (2008). http://www.biomedcentral.com/1471-2288/8/79. doi:10.1186/1471-2288-8-79

  33. Schwarzer, G.: meta: an R package for meta-analysis. R News 7(3), 40–45 (2007). http://cran.r-project.org/doc/Rnews/Rnews_2007-3.pdf

  34. Schwarzer, G.: meta: Meta-Analysis with R. R package version 4.0-2. URL http://cran.R-project.org/package=meta (2014)

  35. Sidik, K., Jonkman, J.N.: Simple heterogeneity variance estimation for meta-analysis. J. R. Stat. Soc. Ser. C 54(2), 367–384 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Sidik, K., Jonkman, J.N.: A comparison of heterogeneity variance estimators in combining results of studies. Stat. Med. 26(9), 1964–1981 (2007). 10.1002/sim.2688. http://dx.doi.org/10.1002/sim.2688

  37. Spooner, C., Saunders, L.D., Rowe, B.H.: Nedocromil sodium for preventing exercise-induced bronchoconstriction. Cochrane Database Syst. Rev. (1) (2002). Art. No. CD001183. doi:10.1002/14651858.CD001183

    Google Scholar 

  38. Steurer, M., Pall, G., Richards, S., Schwarzer, G., Bohlius, J., Greil, R.: Single-agent purine analogues for the treatment of chronic lymphocytic leukaemia: a systematic review and meta-analysis. Cancer Treat. Rev. 32(5), 377–389 (2006)

    Article  Google Scholar 

  39. Stijnen, T., Van Houwelingen, J.C.: Empirical Bayes methods in clinical trials meta-analysis. Biom. J. 32(3), 335–346 (1990)

    Article  Google Scholar 

  40. The Cochrane Collaboration: Review Manager (RevMan) [Computer program]. Version 5.3. The Nordic Cochrane Centre, Copenhagen (2014)

    Google Scholar 

  41. Thompson, S.G.: Controversies in meta-analysis: the case of trials of serum cholesterol reduction. Stat. Methods Med. Res. 2, 173–192 (1993)

    Article  Google Scholar 

  42. Tierney, J.F., Stewart, L.A., Ghersi, D., Burdett, S., Sydes, M.R.: Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8, 16 (2007). doi:10.1186/1745-6215-8-16

    Article  Google Scholar 

  43. Viechtbauer, W.: Bias and efficiency of meta-analytic variance estimators in the random-effects model. J. Educ. Behav. Stat. 30, 261–293 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schwarzer, G., Carpenter, J.R., Rücker, G. (2015). Fixed Effect and Random Effects Meta-Analysis. In: Meta-Analysis with R. Use R!. Springer, Cham. https://doi.org/10.1007/978-3-319-21416-0_2

Download citation

Publish with us

Policies and ethics