Skip to main content

Tissue Heterogeneity as a Pre-analytical Source of Variability

  • Chapter
  • First Online:
Pre-Analytics of Pathological Specimens in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 199))

Abstract

A low level of reproducibility is the shortcoming of clinical studies where human tissues are used, especially in oncology (EGAAP, Evaluation of Genomic Applications and Prevention Working Group (2013) Recommendations from the EGAPP Working Group: can testing of tumor tissue for mutations in EGFR pathway downstream effector genes in patients with metastatic colorectal cancer improve health outcomes by guiding decisions regarding anti-EGFR therapy? Genet Med: Off J Am Coll Med Genet 15:517–527, Simon RM, Paik S, Hayes DF (2009) Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 101:1446–1452). This could be due to the high variability of the pre-analytical conditions of tissue managing and preservation, but also to other two causes. One is the low level of standardization of the methods that is pertinent to the analytical phase. Heterogeneity of tissues is the other problem and it can be considered to be actually related to pre-analytical procedures. Indeed, it is a pre-condition that has to be taken into consideration before the specific analysis. Not all the consequences of heterogeneity can be more or less easily avoided by carefully choosing the tissues to be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EGAAP, Evaluation of Genomic Applications and Prevention Working Group (2013) Recommendations from the EGAPP Working Group: can testing of tumor tissue for mutations in EGFR pathway downstream effector genes in patients with metastatic colorectal cancer improve health outcomes by guiding decisions regarding anti-EGFR therapy? Genet Med: Off J Am Coll Med Genet 15:517–527

    Article  Google Scholar 

  2. Simon RM, Paik S, Hayes DF (2009) Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 101:1446–1452

    Article  PubMed Central  PubMed  Google Scholar 

  3. Elloumi F, Hu Z, Li Y et al (2011) Systematic bias in genomic classification due to contaminating non-neoplastic tissue in breast tumor samples. BMC Med Genomics 4:54

    Article  PubMed Central  PubMed  Google Scholar 

  4. Hlubek F, Brabletz T, Budczies J, Pfeiffer S, Jung A, Kirchner T (2007) Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. Int J Cancer 1:1941–1948

    Article  Google Scholar 

  5. Gerlinger M et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  CAS  PubMed  Google Scholar 

  6. Aparicio S, Caldas C (2013) The implications of clonal genome evolution for cancer medicine. N Engl J Med 368:842–851

    Article  CAS  PubMed  Google Scholar 

  7. Misale S et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Rashid A, Issa JP (2004) CpG island methylation in gastroenterologic neoplasia: a maturing field. Gastroenterology 127:1578–1588

    Article  CAS  PubMed  Google Scholar 

  9. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  10. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237

    Article  CAS  PubMed  Google Scholar 

  11. Feron O (2009) Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol 92:329–333

    Article  CAS  PubMed  Google Scholar 

  12. Kennedy KM, Dewhirst MW (2010) Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol 6:127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Schito L et al (2012) Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc Natl Acad Sci USA 109:E2707–E2716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Marotta LLC et al (2011) The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24 stem cell—like breast cancer cells in human tumors. J Clin Investig 121:2723–2735

    Google Scholar 

  15. Korkaya H, Liu S, Wicha MS (2011) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Investig 121:3804–3809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Okuda H et al (2013) miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res 73:1434–1444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Watabe K (2013) MicroRNA molecule may serve as biomarker, target for brain metastases in breast cancer patients. American Association for Cancer Research, February 5. http://www.aacr.org

  18. Li GW, Xie XS (2011) Central dogma at the single-molecule level in living cells. Nature 475:308–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Spencer SL et al (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459:428–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Barga A et al (2011) Predicting mutation outcome from early stochastic variation in genetic interaction partners. Nature 480:250–253

    Article  Google Scholar 

  21. Alamgeer M, Ganju V, Watkins DN (2013) Novel therapeutic targets in non-small cell lung cancer. Curr Opin Pharmacol 13:394–401

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Stanta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stanta, G. (2015). Tissue Heterogeneity as a Pre-analytical Source of Variability. In: Dietel, M., Wittekind, C., Bussolati, G., von Winterfeld, M. (eds) Pre-Analytics of Pathological Specimens in Oncology. Recent Results in Cancer Research, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-319-13957-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13957-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13956-2

  • Online ISBN: 978-3-319-13957-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics