Skip to main content

Vibration Analysis in Cutting Materials

  • Chapter
  • First Online:
Recurrence Quantification Analysis

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The orthogonal cutting process is a highly nonlinear phenomenon, where dry friction is combined with possible contact loss and time delay effects. Unwanted and harmful vibrations may appear during cutting; the vibrations may have a regular or chaotic nature depending on the system vibrations. These vibrations disturb the process and affect the final surface quality of the workpiece. We investigate the dynamics of the cutting process by modeling it as a two-degrees of freedom nonlinear system. Using nonlinear analysis methods, such as nonlinear time series embedding approach, recurrence plots (RP) and recurrence quantification analysis (RQA), we try to identify the system variables and cutting forces that lead to chaotic motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Grabec, Chaos generated by the cutting process. Phys. Lett. A 8, 384–386 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  2. I. Grabec, Chaotic dynamics of the cutting process. Int. J. Mach. Tools Manufact. 28, 19–32 (1988)

    Article  Google Scholar 

  3. M. Wiercigroch, Chaotic vibration of a simple model of the machine tool-cutting process system. J. Vib. Acoust. 119, 468–475 (1997)

    Article  Google Scholar 

  4. M. Wiercigroch, A. Cheng, Chaotic and stochastic dynamics of orthogonal metal cutting. Chaos Solitons Fractals 8, 715–726 (1997)

    Article  ADS  MATH  Google Scholar 

  5. M. Wiercigroch, A.M. Krivtsov, Frictional chatter in orthogonal metal cutting. Philos Trans. R. Soc. A 359, 713–738 (2001)

    Article  ADS  MATH  Google Scholar 

  6. J. Warminski, G. Litak, M.P. Cartmell, R. Khanin, M. Wiercigroch, Approximate analytical solutions for primary chatter in the nonlinear metal cutting model. J. Sound Vib. 259, 917–933 (2003)

    Article  ADS  Google Scholar 

  7. S. Chatterjee and T.K. Singha, Controlling chaotic instability of cutting process by high-frequency excitation: a numerical investigation. J. Sound Vib. 267, 1184–1192 (2003)

    Article  ADS  Google Scholar 

  8. J. Gradisek, E. Govekar, I. Grabec, A chaotic cutting process and determining optimal cutting parameter using neural networks. Int. J. Mach. Tools Manufact. 36, 1161–1172 (1996)

    Article  Google Scholar 

  9. A.K. Sen, G. Litak, A. Syta, Cutting process dynamics by nonlinear time series and wavelet analysis. Chaos 17, 023133 (2007)

    Article  ADS  Google Scholar 

  10. G. Stepan, T. Kalmar-Nagy, Nonlinear regenerative machine tool vibrations, in Proceedings of 16th ASME Biennial Conference on Mechanical Vibrations and Noise, ASME Design and Technical Conference, Sacramento, 14–17 September 1997, pp. 1–11

    Google Scholar 

  11. G. Stepan, Delay-differential equation models for machine tool chatter, in Dynamics and Chaos in Manufacturing Processes, ed. by F.C. Moon (Wiley, New York, 1998), pp. 165–192

    Google Scholar 

  12. G. Stepan, Modelling nonlinear regenerative effects in metal cutting. Phil. Trans. R. Soc. Lond. A 359, 739–757 (2001)

    Article  ADS  MATH  Google Scholar 

  13. M.S. Fofana, Delay dynamical systems and applications to nonlinear machine-tool chatter. Chaos Solitons Fractals 17, 731–747 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. J.R. Pratt, A.H. Nayfeh, Design and modeling for chatter control. Nonlinear Dyn. 19, 49–69 (1999)

    Article  MATH  Google Scholar 

  15. A.H. Nayfeh, C.M. Chin, J.R. Pratt, Applications of perturbation methods to tool chatter dynamics, in Nonlinear Dynamics of Material Processing and Manufacturing, ed. by F.C. Moon (Wiley, New York, 1997), pp. 123–193

    Google Scholar 

  16. G. Litak, Chaotic vibrations in a regenerative cutting process. Chaos Solitons Fractals 13, 1531–1535 (2002)

    Article  ADS  MATH  Google Scholar 

  17. X.S. Wang, J. Hu, J.B. Gao, Nonlinear dynamics of regenerative cutting processes–Comparison of two models. Chaos Solitons Fractals 29, 1219–1228 (2006)

    Article  ADS  MATH  Google Scholar 

  18. G. Litak, S. Schubert, G. Radons, Nonlinear dynamics of a regenerative cutting process. Nonlinear Dyn. 69, 1255–1262 (2012)

    Article  MathSciNet  Google Scholar 

  19. I.N. Tansel, C. Erkal, T. Keramidas, The chaotic characteristics of three-dimensional cutting. Int. J. Mach. Tools Manufact. 32, 811–827 (1992)

    Article  Google Scholar 

  20. D.B. Marghitu, B.O. Ciocirlan, N. Craciunoiu, Dynamics in orthogonal turning process. Chaos Solitons Fractals 12, 2343–2352 (2001)

    Article  ADS  Google Scholar 

  21. G. Litak, R. Rusinek, A. Teter, Nonlinear analysis of experimental time series of a straight turning process. Meccanica 39, 105–112 (2004)

    Article  MATH  Google Scholar 

  22. J. Gradisek, I. Grabec, S. Sigert, R. Friedrich, Stochastic dynamics of metal cutting: bifurcation phenomena in turning. Mech. Syst. Signal Process. 16, 831–840 (2002)

    Article  ADS  Google Scholar 

  23. J. Gradisek, E. Govekar, I. Grabec, Chater onset in non-regenerative cutting: a numerical study J. Sound Vib. 242, 829–838 (2001)

    Article  ADS  Google Scholar 

  24. J. Gradisek, E. Govekar, I. Grabec, Time series analysis in metal cutting: chater versus chatter-free cutting. Mech. Syst. Signal Process. 12, 839–854 (1998)

    Article  ADS  Google Scholar 

  25. J. Gradisek, E. Govekar, I. Grabec, Using coarse-grained entropy rate to detect chatter in cutting. J. Sound Vib. 214, 941–952 (1998)

    Article  ADS  Google Scholar 

  26. G. Litak, A. Syta, M. Wiercigroch, Identification of chaos in a cutting process by the 0-1 test, Chaos Solitons Fractals 40, 2095–2101 (2009)

    Google Scholar 

  27. W.F. Hastings, P. Mathew, P.L.B. Oxley, A machining theory for predicting chip geometry, cutting forces etc. from material properties and cutting conditions. Proc. R. Soc. Lond. A 371, 569–587 (1980)

    Google Scholar 

  28. A.M. Fraser, H.L. Swinney, Independent coordinates for strange attractors from mutual information, Phys. Rev. A 33, 1134–1140 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. H. Kantz, T. Schreiber, Non-linear Time Series Analysis (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  30. R. Hegger, H. Kantz, T. Schreiber, Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 9, 413–435 (1999)

    Article  ADS  MATH  Google Scholar 

  31. J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, Recurrence plots of dynamical systems. Europhys. Lett. 5, 973–977 (1987)

    Article  ADS  Google Scholar 

  32. C.L. Webber, Jr., J.P. Zbilut, Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76, 965–973 (1994)

    Google Scholar 

  33. N. Marwan, J. Kurths, Line structures in recurrence plots. Phys. Lett. A 336, 349–357 (2005)

    Article  ADS  MATH  Google Scholar 

  34. N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  35. N. Marwan, A historical review of recurrence plots. Eur. Phys. J. Spec. Top. 164, 3–12 (2008)

    Article  Google Scholar 

  36. G. Litak, R. Rusinek, Dynamics of a stainless steel turning process by statistical and recurrence analyses. Meccanica 47, 1517–1526 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support the Structural Funds under the Operational Programme—Innovative Economy (IE OP) financed from the European Regional Development Fund—Project Modern material technologies in aerospace industry, No. POIG.01.01.02-00-015/08-00, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Syta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Syta, A., Litak, G. (2015). Vibration Analysis in Cutting Materials. In: Webber, Jr., C., Marwan, N. (eds) Recurrence Quantification Analysis. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-07155-8_9

Download citation

Publish with us

Policies and ethics