Skip to main content

Recurrence Analysis of Otoacoustic Emissions

  • Chapter
  • First Online:
Recurrence Quantification Analysis

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Otoacoustic emissions are sounds generated inside the inner ear. Recurrence Quantification Analysis (RQA) has proven to be particularly suited for studying such signals, being able to evidence their essential dynamical characteristics. In this chapter the fundamental features of the auditory system will be briefly reviewed, then the results obtained in the literature, and linked to the application of RQA to otoacoustic emissions, will be reported and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Bronzino (ed.), The Biomedical Engineering Handbook (CRC Press, Boca Raton, FL, USA 1995)

    Google Scholar 

  2. D.T. Kemp, Stimulated acoustic emissions from within the human auditory system. J. Acoust. Soc. Am. 64(5), 1386–1391 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Hatzopoulos, J. Petrucelli, T. Morlet, A. Martini, Otoacoustic emission protocols revised. Data from adult subjects. Int. J. Audiol. 42(6), 339–347 (2003)

    Article  Google Scholar 

  4. C.A. Shera, J.J. Guinan Jr., Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J. Acoust. Soc. Am. 105, 782–798 (1999)

    Article  ADS  Google Scholar 

  5. D. Konrad-Martin, D.H. Keefe, Time–frequency analysis of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions. J. Acoust. Soc. Am. 114(4), 2021–2043 (2003)

    Article  ADS  Google Scholar 

  6. W.E. Brownell, Outer hair cell electromotility and otoacoustic emissions. Ear Hear. 11(2), 82–92 (1990)

    Article  Google Scholar 

  7. R. Sisto, A. Moleti, Otoacoustic emissions and cochlear reflectivity. J. Acoust. Soc. Am. 124(5), 2995–3008 (2008)

    Article  ADS  Google Scholar 

  8. R.H. Withnell, C. Hazlewood, A. Knowlton, Reconciling the origin of the transient evoked otoacoustic emission in humans. J. Acoust. Soc. Am. 123(1), 212–221 (2008)

    Article  ADS  Google Scholar 

  9. S. Verhulst, J.M. Harte, T. Dau, Temporal suppression and augmentation of click-evoked otoacoustic emissions. Hear. Res. 246, 23–35 (2008)

    Article  Google Scholar 

  10. R. Probst, B.L. Lonsbury-Martin, G.K. Martin, A review of otoacoustic emissions. J. Acoust. Soc. Am. 89(5), 2027–2067 (1991)

    Article  ADS  Google Scholar 

  11. P. Avan, B. Buki, B. Maat, M. Dordain, H.P. Wit, Middle ear influence on otoacoustic emissions. I: non invasive investigation of the human transmission apparatus and comparison with model results. Hear. Res. 140, 189–201 (2000)

    Article  Google Scholar 

  12. P. Avan, P. Bonfils, Distortion-product otoacoustic emission spectra and high-resolution audiometry in noise-induced hearing loss. Hear. Res. 209(1–2), 68–75 (2005)

    Article  Google Scholar 

  13. A.L. Hamdan, K.S. Abouchacra, A.G. Al Hazzouri, G. Zaytoun, Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds. Ear Hear. 29(3), 360–377 (2008)

    Article  Google Scholar 

  14. A.R. Fetoni, M. Garzaro, M. Ralli, V. Landolfo, M. Sensini, G. Pecorari, A. Mordente, G. Paludetti, C. Giordano, The monitoring role of otoacoustic emissions and oxidative stress markers in the protective effects of antioxidant administration in noise-exposed subjects: a pilot study. Med. Sci. Monit. 15(11), PR 1–PR 8 (2009)

    Google Scholar 

  15. A. Paglialonga, S. Fiocchi, L. Del Bo, P. Ravazzani, G. Tognola, Quantitative analysis of cochlear active mechanisms in tinnitus subjects with normal hearing sensitivity: time–frequency analysis of transient evoked otoacoustic emissions and contralateral suppression. Auris Nasus Larynx 38(1), 33–40 (2011)

    Article  Google Scholar 

  16. World Health Organization (WHO). Deafness and hearing loss. Fact sheet N°300 (2013). http://www.who.int/mediacentre/factsheets/fs300/en/index.html. Accessed 21 July 2013

  17. S. Stenfelt, Towards understanding the specifics of cochlear hearing loss: a modelling approach. Int. J. Audiol. 47(S2), S10–S15 (2008)

    Article  Google Scholar 

  18. G.A. Gates, J.H. Mills, Presbycusis. Lancet 366(9491), 1111–1120 (2005)

    Article  Google Scholar 

  19. EU-OSHA – European Agency for Safety and Health at Work. Combined exposure to Noise and Ototoxic Substances, 2009

    Google Scholar 

  20. H.F. Schuknecht, Presbycusis, in Pathology of the Ear, ed. by H.F. Schuknecht, M.R. Gacek (Harvard University Press, Cambridge, 1974)

    Google Scholar 

  21. H.F. Schuknecht, M.R. Gacek, Cochlear pathology in presbycusis. Ann. Otol. Rhinol. Laryngol. 102(1 Pt 2), 1–16 (1993)

    Google Scholar 

  22. C.R. Jenning, N.S. Jones, Presbycusis. J. Laryngol. Otol. 115(3), 171–178 (2001)

    Google Scholar 

  23. X.Z. Liu, D. Yan, Ageing and hearing loss. J. Pathol. 211(2), 188–197 (2007)

    Article  Google Scholar 

  24. K.K. Ohlemiller, M.E. Rybak Rice, J.M. Lett, P.M. Gagnon, Absence of strial melanin coincides with age-associated marginal cell loss and endocochlear potential decline. Hear. Res. 249(1–2), 1–14 (2009)

    Article  Google Scholar 

  25. E.C. Bielefeld, C. Tanaka, G.D. Chen, D. Henderson, Age-related hearing loss: is it a preventable condition? Hear. Res. 264, 98–107 (2010)

    Article  Google Scholar 

  26. Q. Huang, J. Tang, Age-related hearing loss or presbycusis. Eur. Arch. Otorhinolaryngol. 267, 1179–1191 (2010)

    Article  Google Scholar 

  27. A.R. Fetoni, P.M. Picciotti, G. Paludetti, D. Troiani, Pathogenesis of presbycusis in animal models: a review. Exp. Gerontol. 46(6), 413–425 (2011)

    Article  Google Scholar 

  28. OSHA United States Occupational Safety and Health Administration, 1910.95 CFR occupational noise exposure: hearing conservation amendment (final rule). Fed. Regist. 48, 9738–9785 (1983)

    Google Scholar 

  29. EU-OSHA – European Agency for Safety and Health at Work. Noise in Figures, Risk Observatory Thematic Report, 2006

    Google Scholar 

  30. D. Henderson, E.C. Bielefeld, K.C. Harris, B.H. Hu, The role of oxidative stress in noise-induced hearing loss. Ear Hear. 27(1), 1–19 (2006)

    Article  Google Scholar 

  31. C.G. Le Prell, D. Yamashita, S.B. Minami, T. Yamasoba, J.M. Miller, Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear. Res. 226, 22–43 (2007)

    Article  Google Scholar 

  32. J.L. Puel, S. Saffiedine, C. Gervais d’Aldin, M. Eybalin, R. Pujol, Synaptic regeneration and functional recovery after excitotoxic injury in the guinea pig cochlea. C. R. Acad. Sci. III 318(1), 67–75 (1995)

    Google Scholar 

  33. A.R. Fetoni, A. Ferraresi, C.L. Greca, D. Rizzo, B. Sergi, G. Tringali, R. Piacentini, D. Troiani, Antioxidant protection against acoustic trauma by coadministration of idebenone and vitamin E. Neuroreport 19(3), 277–281 (2008)

    Article  Google Scholar 

  34. A.R. Fetoni, R. Piacentini, A. Fiorita, G. Paludetti, D. Troiani, Water-soluble coenzyme Q(10) formulation (Q-ter) promotes outer hair cell survival in a guinea pig model of noise induced hearing loss (NIHL). Brain Res. 1257, 108–116 (2008)

    Article  Google Scholar 

  35. A.R. Fetoni, M. Ralli, B. Sergi, C. Parrilla, D. Troiani, G. Paludetti, Protective effects ofN-acetylcysteine on noise induced hearing loss in guinea pigs. Acta Otorhinolaryngol. Ital. 29(2), 70–75 (2009)

    Google Scholar 

  36. A.R. Fetoni, M. Ralli, B. Sergi, C. Parrilla, D. Troiani, G. Paludetti, Protective properties of antioxidant drugs in noise-induced hearing loss in the guinea pig. Audiol. Med. 6(4), 271–277 (2009)

    Article  Google Scholar 

  37. B.M. Vinck, P.B. van Cauwenberge, L. Leroy, P. Corthals, Sensitivity of transient evoked and distortion product otoacoustic emissions to the direct effects of noise on the human cochlea. Audiology 38, 44–52 (1999)

    Article  Google Scholar 

  38. Y. Uchida, T. Nakashimat, F. Ando, N. Niino, H. Shimokata, Is there a relevant effect of noise and smoking on hearing? A population-based aging study. Int. J. Audiol. 44, 86–91 (2005)

    Article  Google Scholar 

  39. D. Balatsouras, A. Kaberos, E. Karapantzos, E. Homsioglou, N.C. Economou, S. Korres, Correlation of transiently evoked otoacoustic emission measures to auditory thresholds. Med. Sci. Monit. 10(2), MT24–MT30 (2004)

    Google Scholar 

  40. D. Davilis, S.G. Korres, D.G. Balatsouras, E. Gkoritsa, G. Stivaktakis, E. Ferekidis, The efficacy of transiently evoked otoacoustic emissions in the detection of middle-ear pathology. Med. Sci. Monit. 11(12), MT75–MT78 (2005)

    Google Scholar 

  41. S. Hatzopoulos, A. Grzanka, A. Martini, W. Konopka, New clinical insights for transiently evoked otoacoustic emission protocols. Med. Sci. Monit. 15(8), CR403–CR408 (2009)

    Google Scholar 

  42. M.L. Whitehead, B.B. Stagner, B. Lonsbury-Martin, G.K. Martin, Measurement of otoacoustic emissions for hearing assessment. IEEE Eng. Med. Biol. Mag. 13, 210–226 (1994)

    Article  Google Scholar 

  43. P. Ravazzani, F. Grandori, Evoked otoacoustic emissions: nonlinearities and response interpretation. IEEE Trans. Biomed. Eng. 40(5), 500–504 (1993)

    Article  Google Scholar 

  44. Otodynamic. ILO OAE Instrument User Manual. Issue 5a, 1997

    Google Scholar 

  45. C.A. Shera, Mechanisms of mammalian otoacoustic emission and their implications for the clinical utility of otoacoustic emissions. Ear Hear. 25(2), 86–97 (2004)

    Article  Google Scholar 

  46. J. Attias, M. Furst, V. Furman, I. Reshef, G. Horowitz, I. Bresloff, Noise-induced otoacoustic emission loss with or without hearing loss. Ear Hear. 16(6), 612–618 (1995)

    Article  Google Scholar 

  47. A. Shupak, D. Tal, Z. Sharoni, M. Oren, A. Ravid, H. Pratt, Otoacoustic emissions in early noise-induced hearing loss. Otol. Neurotol. 28(6), 745–752 (2007)

    Article  Google Scholar 

  48. M. Lucertini, A. Moleti, R. Sisto, On the detection of early cochlear damage by otoacoustic emission analysis. J. Acoust. Soc. Am. 111(1–2), 972–978 (2002)

    Article  ADS  Google Scholar 

  49. J.P. Zbilut, A. Giuliani, C.L. Webber, Recurrence quantification analysis and principal components in detection of short complex signals. Phys. Lett. A 237, 131–135 (1998)

    Article  ADS  Google Scholar 

  50. C. Manetti, M.A. Ceruso, A. Giuliani, C.L. Webber, J.P. Zbilut, Recurrence quantification analysis as a tool for characterization of molecular dynamics simulation. Phys. Rev. E 59, 992–998 (1999)

    Article  ADS  Google Scholar 

  51. G. Zimatore, A. Giuliani, C. Parlapiano, G. Grisanti, A. Colosimo, Revealing deterministic structures in click-evoked otoacoustic emissions. J. Appl. Phys. 88(4), 1431–1437 (2000)

    Google Scholar 

  52. G. Zimatore, A. Giuliani, S. Hatzopoulos, A. Martini, A. Colosimo, Otoacoustic emissions at different click intensities: invariant and subject dependent features. J. Appl. Phys. 95(6), 2299–2305 (2003)

    Google Scholar 

  53. P. Ravazzani, G. Tognola, M. Parazzini, F. Grandori, Principal component analysis as a method to facilitate fast detection of transient-evoked otoacoustic emissions. IEEE Trans. Biomed. Eng. 50(2), 249–252 (2003)

    Article  Google Scholar 

  54. W.A. Harrison, S.J. Norton, Characteristics of transient evoked otoacoustic emissions in normal-hearing and hearing impaired children. Ear Hear. 20, 75–86 (1999)

    Article  Google Scholar 

  55. A.B. Maxon, B.R. Vohr, K.R. White, Newborn hearing screening: comparison of a simplified otoacoustic emissions device (ILO1088) with the ILO88. Early Hum. Dev. 45, 171–178 (1996)

    Article  Google Scholar 

  56. T. Morlet, L. Goforth, L.J. Hood, C. Ferber, R. Duclaux, C.I. Berlin, Development of human cochlear active mechanism asymmetry: involvement of the medial olivocochlear system? Hear. Res. 134, 153–162 (1999)

    Article  Google Scholar 

  57. S.J. Norton, M.P. Gorga, J.E. Widen, R.C. Folsom, Y. Sininger, B. Cone-Wesson, B.R. Vohr, K. Mascher, K. Fletcher, Identification of neonatal hearing impairment: evaluation of transient evoked otoacoustic emission, distortion product otoacoustic emission, and auditory brain stem response test performance. Ear Hear. 21(5), 508–528 (2000)

    Article  Google Scholar 

  58. S.J. Norton, Application of transient evoked otoacoustic emissions to pediatric populations. Ear Hear. 14, 64–73 (1993)

    Article  Google Scholar 

  59. G. Zimatore, S. Hatzopoulos, A. Giuliani, A. Martini, A. Colosimo, Comparison of transient otoacoustic emission responses from neonatal and adult ears. J. Appl. Physiol. 92(6), 2521–2528 (2002)

    Google Scholar 

  60. J.B. Allen, Nonlinear cochlear signal processing, in Physiology of the Ear, ed. by A.F. Jahn, J. Santos-Sacchi, 2nd edn. (Singular Thompson, San Diego, 2001), pp. 393–442

    Google Scholar 

  61. L. Robles, M.A. Ruggero, Mechanics of the mammalian cochlea. Physiol. Rev. 81, 1305–1352 (2001)

    Google Scholar 

  62. H.P. Wit, P. van Dijk, P. Avan, Wavelet analysis of real ear and synthesized click-evoked otoacoustic emissions. Hear. Res. 73, 141–147 (1994)

    Article  Google Scholar 

  63. R.F. Lyon, C. Mead, An analog electronic cochlea. IEEE Trans. Acoust. Speech Signal Process. 36(7), 1119–1134 (1988)

    Article  MATH  Google Scholar 

  64. J. Merhaud, Theory of Electroacoustics (McGraw-Hill, New York, 1981)

    Google Scholar 

  65. C. Giguère, P.C. Woodland, A computational model of the auditory periphery for speech and hearing research. I. Ascending path. J. Acoust. Soc. Am. 95(1), 331–342 (1994)

    Article  ADS  Google Scholar 

  66. C. Giguère, P.C. Woodland, A computational model of the auditory periphery for speech and hearing research. II. Descending paths. J. Acoust. Soc. Am. 95(1), 343–349 (1994)

    Article  ADS  Google Scholar 

  67. G. Zimatore, M. Cavagnaro, A. Giuliani, A. Colosimo, Reproducing cochlear signals by a minimal electroacoustic model. Open J. Biophys. 2, 33–39 (2012)

    Article  ADS  Google Scholar 

  68. M.B. Gardner, M.S. Hawley, Network representations of the external ear. J. Acoust. Soc. Am. 52, 1620–1628 (1972)

    Article  ADS  Google Scholar 

  69. M.E. Lutman, A.M. Martin, Development of an electroacoustic analogue model of the middle ear and acoustic reflex. J. Sound Vib. 64(1), 133–157 (1979)

    Article  ADS  Google Scholar 

  70. G. Zimatore, M. Cavagnaro, A. Giuliani, A. Colosimo, Human acoustic fingerprints. Biophys. Bioeng. Lett. 1(2) (2008)

    Google Scholar 

  71. L. Zheng, Y.T. Zhang, F.S. Yang, D.T. Ye, Synthesis and decomposition of transient-evoked otoacoustic emissions based on an active auditory model. IEEE Trans. Biomed. Eng. 46(9), 1098–1106 (1999)

    Article  Google Scholar 

  72. R. Sisto, A. Moleti, On the frequency dependence of the otoacoustic emission latency in hypoacoustic and normal ears. J. Acoust. Soc. Am. 111, 297–308 (2002)

    Article  ADS  Google Scholar 

  73. G. Tognola, F. Grandori, P. Avan, P. Ravazzani, P. Bonfils, Frequency-specific Information from click evoked otoacoustic emissions in noise-induced hearing loss. Audiology 38(5), 243–250 (1999)

    Article  Google Scholar 

  74. G. Zimatore, A.R. Fetoni, G. Paludetti, M. Cavagnaro, M.V. Podda, D. Troiani, Post-processing analysis of transient-evoked otoacoustic emissions to detect 4 kHz-notch hearing impairment – a pilot study. Med. Sci. Monit. 17(6), MT41–MT49 (2011)

    Article  Google Scholar 

  75. G. Zimatore, D. Stanzial, M.P. Orlando, Otoacoustic emissions, in Acoustic Emission – Research and Applications, ed. by W. Sikorski (InTech, Rijeka, 2013), pp. 203–223

    Google Scholar 

  76. G. Zimatore, Noise ad aging effects in otoacoustic emissions. Ph.D. Dissertation, Catholic University Medical School “A. Gemelli” of Rome Italy, 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Zimatore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zimatore, G., Cavagnaro, M. (2015). Recurrence Analysis of Otoacoustic Emissions. In: Webber, Jr., C., Marwan, N. (eds) Recurrence Quantification Analysis. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-07155-8_8

Download citation

Publish with us

Policies and ethics