Skip to main content

Dynamic Coupling Between Respiratory and Cardiovascular System

  • Chapter
  • First Online:
Recurrence Quantification Analysis

Abstract

The analysis of non-linear dynamics of the coupling among interacting quantities can be very useful for understanding the cardiorespiratory and cardiovascular control mechanisms. In this chapter RP is used to detect and quantify the degree of non-linear coupling between respiration and spontaneous rhythms of both heart rate and blood pressure variability signals. RQA turned out to be suitable for a quantitative evaluation of the observed coupling patterns among rhythms, both in simulated and real data, providing different degrees of coupling. The results from the simulated data showed that the increased degree of coupling between the signals was marked by the increase of PR and PD, and by the decrease of ER. When the RQA was applied to experimental data, PD and ER turned out to be the most significant variables, compared to PR. A remarkable finding is the detection of transient 1:2 PL episodes between respiration and cardiovascular variability signals. This phenomenon can be associated to a sub-harmonic synchronization between the two main rhythms of HR and BP variability series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Sharma, Deterministic chaos and fractal complexity in the dynamics of cardiovascular behavior: perspectives on a new frontier. Open Cardiovasc. Med. J. 3, 110–123 (2009)

    Article  Google Scholar 

  2. D. Hoyer, R. Bauer, B. Walter, U. Zwiener, Estimation of nonlinear couplings on the basis of complexity and predictability – a new method applied to cardiorespiratory coordination. IEEE Trans. Biomed. Eng. 45(5), 545–552 (1998)

    Article  Google Scholar 

  3. D. Hoyer, O. Hoyer, U. Zwiener, A new approach to uncover dynamic phase coordination and synchronization. IEEE Trans. Biomed. Eng. 47(1), 68–74 (2000)

    Article  Google Scholar 

  4. H. Ding, S. Crozier, S. Wilson, A new heart rate variability analysis method by means of quantifying the variation of nonlinear dynamic patterns. IEEE Trans. Biomed. Eng. 54(9), 1590–1597 (2007)

    Article  Google Scholar 

  5. H. Dabiré, D. Mestivier, J. Jarnet, M.E. Safar, N.P. Chau, Quantification of sympathetic and parasympathetic tones by non-linear indexes in normotensive rats. Am. J. Physiol. 275(4 Pt 2), H1290–H1297 (1998)

    Google Scholar 

  6. B. Pompe, P. Blindh, D. Hoyer, M. Eiselt, Using mutual information to measure coupling in the cardiorespiratory system. IEEE Eng. Med. Biol. 17(6), 32–39 (1998)

    Article  Google Scholar 

  7. J.S. Chang, K. Ha, I.Y. Yoon, C.S. Yoo, S.H. Yi, J.Y. Her, T.H. Ha, T. Park, Patterns of cardiorespiratory coordination in young women with recurrent major depressive disorder treated with escitalopram or venlafaxine. Prog. Neuropsychopharmacol. Biol. Psychiatry 39(1), 136–142 (2012)

    Article  Google Scholar 

  8. E. Pereda, D.M. De la Cruz, L. De Vera, J.J. González, Comparing generalized and phase synchronization in cardiovascular and cardiorespiratory signals. IEEE Trans. Biomed. Eng. 52(4), 578–583 (2005)

    Article  Google Scholar 

  9. J.P. Eckmann, S.O. Kamphorst, D. Ruelle, Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987)

    Article  ADS  Google Scholar 

  10. C.L. Webber, J.P. Zbilut, Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76(2), 965–973 (1994)

    Google Scholar 

  11. S. Ramdani, G. Tallon, P.L. Bernard, H. Blain, Recurrence quantification analysis of human postural fluctuations in older fallers and non-fallers. Ann. Biomed. Eng. 41, 1713–1725 (2013)

    Article  Google Scholar 

  12. C.D. Nguyen, S.J. Wilson, S. Crozier, Automated quantification of the synchrogram by recurrence plot analysis. IEEE Trans. Biomed. Eng. 59(4), 946–955 (2012)

    Article  Google Scholar 

  13. M. Mohebbi, H. Ghassemian, Prediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signal. Physiol. Meas. 32(8), 1147–1162 (2011)

    Article  Google Scholar 

  14. U.R. Acharya, S.V. Sree, S. Chattopadhyay, W. Yu, P.C. Ang, Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Int. J. Neural Syst. 21(3), 199–211 (2011)

    Article  Google Scholar 

  15. Y. Peng, Z. Sun, Characterization of QT and RR interval series during acute myocardial ischemia by means of recurrence quantification analysis. Med. Biol. Eng. Comput. 49(1), 25–31 (2011)

    Article  Google Scholar 

  16. M. Mazaheri, H. Negahban, M. Salavati, M.A. Sanjari, M. Parnianpour, Reliability of recurrence quantification analysis measures of the center of pressure during standing in individuals with musculoskeletal disorders. Med. Eng. Phys. 32(7), 808–812 (2010)

    Article  Google Scholar 

  17. P.I. Terrill, S.J. Wilson, S. Suresh, D.M. Cooper, C. Dakin, Attractor structure discriminates sleep states: recurrence plot analysis applied to infant breathing patterns. IEEE Trans. Biomed. Eng. 57(5), 1108–1116 (2010)

    Article  Google Scholar 

  18. S. Raiesdana, S.M. Golpayegani, S.M. Firoozabadi, J. Mehvari Habibabadi, On the discrimination of patho-physiological states in epilepsy by means of dynamical measures. Comput. Biol. Med. 39(12), 1073–1082 (2009)

    Article  Google Scholar 

  19. A. Porta, G. Baselli, N. Montano, T. Gnecchi-Ruscone, F. Lombardi, A. Malliani, S. Cerutti, Non-linear dynamics in the beat-to-beat variability of sympathetic activity in decerebrate cats. Methods Inf. Med. 33, 89–93 (1994)

    Google Scholar 

  20. N. Marwan, J. Kurths, Nonlinear analysis of bivariate data with cross recurrence plots. Phys. Lett. A 302, 299–307 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. M. Carmen Romano, M. Thiel, J. Kurths, W. von Bloh, Multivariate recurrence plots. Phys. Lett. A 330, 214–223 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. A. Porta, G. Baselli, N. Montano, T. Gnecchi-Ruscone, F. Lombardi, A. Malliani, S. Cerutti, Classification of coupling patterns among spontaneous rhythms and ventilation in the sympathetic discharge of decerebrated cats. Biol. Cybern. 75, 163–172 (1996)

    Article  Google Scholar 

  23. F. Censi, V. Barbaro, P. Bartolini, G. Calcagnini, A. Michelucci, G.F. Gensini, S. Cerutti, Spatio-temporal recurrent patterns of atrial depolarization during atrial fibrillation assessed by recurrence plot quantification. Ann. Biomed. Eng. 28(1), 61–70 (2000)

    Article  Google Scholar 

  24. H. Ando, H. Suetani, J. Kurths, K. Aihara, Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(1 Pt 2), 016205.25 (2012)

    ADS  Google Scholar 

  25. M.C. Mackey, L. Glass, Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977)

    Article  ADS  Google Scholar 

  26. M.R. Guevara, L. Glass, A. Shrier, Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science 214, 1350–1352 (1981)

    Article  ADS  Google Scholar 

  27. S.D. Wu, P.C. Lo, Cardiorespiratory phase synchronization during normal rest and inward-attention meditation. Int. J. Cardiol. 141(3), 325–328 (2010)

    Article  MathSciNet  Google Scholar 

  28. M.C. Wu, C.K. Hu, Empirical mode decomposition and synchrogram approach to cardiorespiratory synchronization. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(5 Pt 1), 051917 (2006)

    Article  ADS  Google Scholar 

  29. V. Perlitz, B. Cotuk, M. Lambertz, R. Grebe, G. Schiepek, E.R. Petzold, H. Schmid-Schönbein, G. Flatten, Coordination dynamics of circulatory and respiratory rhythms during psychomotor drive reduction. Auton. Neurosci. 115(1–2), 82–93 (2004)

    Article  Google Scholar 

  30. M.D. Prokhorov, V.I. Ponomarenko, V.I. Gridnev, M.B. Bodrov, A.B. Bespyatov, Synchronization between main rhythmic processes in the human cardiovascular system. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(4 Pt 1), 041913 (2003)

    Article  ADS  Google Scholar 

  31. G.M. Ramírez Ávila, A. Gapelyuk, N. Marwan, H. Stepan, J. Kurths, T. Walther, N. Wessel, Classifying healthy women and preeclamptic patients from cardiovascular data using recurrence and complex network methods. Auton. Neurosci. 178, 103–110 (2013)

    Article  Google Scholar 

  32. R. Guo, Y. Wang, J. Yan, H. Yan, Recurrence quantification analysis on pulse morphological changes in patients with coronary heart disease. J. Tradit. Chin. Med. 32(4), 571–577 (2012)

    Article  Google Scholar 

  33. M. Javorka, Z. Turianikova, I. Tonhajzerova, K. Javorka, M. Baumert, The effect of orthostasis on recurrence quantification analysis of heart rate and blood pressure dynamics. Physiol. Meas. 30(1), 29–41 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Censi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Censi, F., Calcagnini, G., Cerutti, S. (2015). Dynamic Coupling Between Respiratory and Cardiovascular System. In: Webber, Jr., C., Marwan, N. (eds) Recurrence Quantification Analysis. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-07155-8_6

Download citation

Publish with us

Policies and ethics