Skip to main content

Long Time-Scale Recurrences in Ecology: Detecting Relationships Between Climate Dynamics and Biodiversity Along a Latitudinal Gradient

  • Chapter
  • First Online:
Recurrence Quantification Analysis

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Climate is an important driver of ecological dynamics. However, many quantitative methods still ignore the fact that both ecological and climatic dynamics are inherently non-linear. While temporal variability is commonly measured as the standard deviation of the records in a time-series, temporal determinism and predictability can be measured using the approach of Recurrence Plots–Recurrence Quantification Analysis (RP–RQA). In this study, we explore the relationship between climate dynamics and biodiversity of two taxonomic groups (mammal species and tree family richness) over the North- and South-American landmasses. We found that higher biodiversity levels in both taxonomic groups are associated to lower values of climate predictability, determinism and variability in monthly temperature data. Our results also revealed a multiplicity of climate–biodiversity relationships, suggesting that the mechanisms underlying large-scale geographic variations in biodiversity may be more complex that originally envisioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Turchin, S.P. Ellner, Living on the edge of chaos: population dynamics of Fennoscandian voles. Ecology 81(11), 3099–3116 (2000)

    Article  Google Scholar 

  2. A. Hastings, Transients: the key to long-term ecological understanding? Trends Ecol. Evol. 19(1), 39–45 (2004)

    Article  MathSciNet  Google Scholar 

  3. M. Scheffer, J. Bascompte, W.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, G. Sugihara, Early-warning signals for critical transitions. Nature 461(7260), 53–59 (2009)

    Article  ADS  Google Scholar 

  4. M.A. Huston, M.A. Huston, Biological Diversity: The Coexistence of Species (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  5. D.J. Currie, G.G. Mittelbach, H.V. Cornell, R. Field, J.F. Guégan, B.A. Hawkins, J.R.G. Turner, Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness. Ecol. Lett. 7(12), 1121–1134 (2004)

    Article  Google Scholar 

  6. W. Von Bloh, M.C. Romano, M. Thiel, Long-term predictability of mean daily temperature data. Nonlinear Processes Geophys. 12(4), 471–479 (2005)

    Article  ADS  Google Scholar 

  7. Z.Q. Zhao, S.C. Li, J.B. Gao, Y.L. Wang, Identifying spatial patterns and dynamics of climate change using recurrence quantification analysis: a case study of Qinghai-Tibet plateau. Int. J. Bifurcation Chaos 21(04), 1127–1139 (2011)

    Article  ADS  MATH  Google Scholar 

  8. N. Marwan, M. Carmen Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5), 237–329 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. J.P. Eckmann, S.O. Kamphorst, D. Ruelle, Recurrence plots of dynamical systems. EPL (Europhys. Lett.) 4(9), 973 (1987)

    Article  ADS  Google Scholar 

  10. R. Proulx, P. Côté, L. Parrott, Use of recurrence analysis to measure the dynamical stability of a multi-species community model. Eur. Phys. J. Spec. Top. 164(1), 117–126 (2008)

    Article  Google Scholar 

  11. J.P. Zbilut, C.L. Webber, Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3), 199–203 (1992)

    Article  ADS  Google Scholar 

  12. L.L. Trulla, A. Giuliani, J.P. Zbilut, C.L. Webber, Recurrence quantification analysis of the logistic equation with transients. Phys. Lett. A 223(4), 255–260 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. C. Mocenni, A. Facchini, A. Vicino, Comparison of recurrence quantification methods for the analysis of temporal and spatial chaos. Math. Comput. Model. 53(7), 1535–1545 (2011)

    Article  Google Scholar 

  14. N. Marwan, How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurcation Chaos 21(04), 1003–1017 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. B.A. Hawkins, R. Field, H.V. Cornell, D.J. Currie, J.F. Guégan, D.M. Kaufman, J.R. Turner, Energy, water, and broad-scale geographic patterns of species richness. Ecology 84(12), 3105–3117 (2003)

    Article  Google Scholar 

  16. A. Clarke, K.J. Gaston, Climate, energy and diversity. Proc. Roy. Soc. B Biol. Sci. 273(1599), 2257–2266 (2006)

    Article  Google Scholar 

  17. P. Andrews, E.M. O’Brien, Climate, vegetation, and predictable gradients in mammal species richness in southern Africa. J. Zool. 251(2), 205–231 (2000)

    Article  Google Scholar 

  18. A.P. Francis, D.J. Currie, A globally consistent richness–climate relationship for angiosperms. Am. Nat. 161(4), 523–536 (2003)

    Article  Google Scholar 

  19. H. Kreft, W. Jetz, Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. 104(14), 5925–5930 (2007)

    Article  ADS  Google Scholar 

  20. R. Carrara, D.P. Vázquez, The species–energy theory: a role for energy variability. Ecography 33(5), 942–948 (2010)

    Article  Google Scholar 

  21. P. Chesson, Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31(1), 343–366 (2000)

    Google Scholar 

  22. B.D. Patterson, G. Ceballos, W. Sechrest, M.F. Tognelli, T. Brooks, L. Luna, P. Ortega, I. Salazar, B.E. Young, Digital Distribution Maps of the Mammals of the Western Hemisphere, version 2.0. NatureServe, Arlington, 2005

    Google Scholar 

  23. T.D. Mitchell, P.D. Jones, An improved method of constructing a database of monthly climate observations and associated high‐resolution grids. Int. J. Climatol. 25(6), 693–712 (2005)

    Article  Google Scholar 

  24. T.M. Therneau, B. Atkinson, B. Ripley, rpart: Recursive Partitioning. R package version, 3, (2010) pp. 1–46

    Google Scholar 

  25. S.P. Hubbell, Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203(4387), 1299–1309 (1979)

    Article  ADS  Google Scholar 

  26. J. Chave, Neutral theory and community ecology. Ecol. Lett. 7(3), 241–253 (2004)

    Article  ADS  Google Scholar 

  27. J.S. Clark, M. Dietze, S. Chakraborty, P.K. Agarwal, I. Ibanez, S. LaDeau, M. Wolosin, Resolving the biodiversity paradox. Ecol. Lett. 10(8), 647–659 (2007)

    Article  Google Scholar 

  28. K. Fraedrich, Estimating the dimensions of weather and climate attractors. J. Atmos. Sci. 43(5), 419–432 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Usinowicz, S.J. Wright, A.R. Ives, Coexistence in tropical forests through asynchronous variation in annual seed production. Ecology 93(9), 2073–2084 (2012)

    Article  Google Scholar 

  30. J.R. Runkle, Synchrony of regeneration, gaps, and latitudinal differences in tree species diversity. Ecology 70(3), 546–547 (1989)

    Article  Google Scholar 

  31. D.H. Wright, Species–energy theory: an extension of species–area theory. Oikos 41(3), 496–506 (1983)

    Google Scholar 

  32. E. Nevo, Asian, African and European biota meet at ‘Evolution Canyon’ Israel: local tests of global biodiversity and genetic diversity patterns. Proc. Roy. Soc. Lond. Ser. B Biol. Sci. 262(1364), 149–155 (1995)

    Article  ADS  Google Scholar 

  33. J.M. Durant, D.O. Hjermann, G. Ottersen, N.C. Stenseth, Climate and the match or mismatch between predator requirements and resource availability. Climate Res. 33(3), 271 (2007)

    Article  Google Scholar 

  34. M.E. Visser, C. Both, Shifts in phenology due to global climate change: the need for a yardstick. Proc. Roy. Soc. B Biol. Sci. 272(1581), 2561–2569 (2005)

    Article  Google Scholar 

  35. G.R. Walther, E. Post, P. Convey, A. Menzel, C. Parmesan, T.J. Beebee, F. Bairlein, Ecological responses to recent climate change. Nature 416(6879), 389–395 (2002)

    Article  ADS  Google Scholar 

  36. A.R. Ives, S.R. Carpenter, Stability and diversity of ecosystems. Science 317, 58–62 (2007)

    Article  ADS  Google Scholar 

  37. M.C. Romano, M. Thiel, J. Kurths, W. von Bloh, Multivariate recurrence plots. Phys. Lett. A 330(3), 214–223 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. A. Hastings, C.L. Hom, S. Ellner, P. Turchin, H.C.J. Godfray, Chaos in ecology: is mother nature a strange attractor? Annu. Rev. Ecol. Syst. 24(1), 1–33 (1993)

    Google Scholar 

  39. R. Proulx, C. Wirth, W. Voigt, A. Weigelt, C. Roscher, S. Attinger, J. Baade et al. Diversity promotes temporal stability across levels of ecosystem organization in experimental grasslands. PLoS one. 5(10), e13382 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Proulx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Proulx, R., Parrott, L., Fahrig, L., Currie, D.J. (2015). Long Time-Scale Recurrences in Ecology: Detecting Relationships Between Climate Dynamics and Biodiversity Along a Latitudinal Gradient. In: Webber, Jr., C., Marwan, N. (eds) Recurrence Quantification Analysis. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-07155-8_11

Download citation

Publish with us

Policies and ethics