Skip to main content

COG complex

  • Chapter
The Golgi Apparatus

Abstract

The conserved oligomeric Golgi (COG) protein complex consists of eight subunits named Cog1 through Cog8 (Kingsley et al. 1986; Ram et al. 2002; Suvorova et al. 2001, 2002; Ungar et al. 2002, Whyte and Munro 2001). Based on yeast genetic studies, biochemical observations and electron micrographs of the complex (Ungar et al. 2002) the COG subunits have been grouped into two lobes consisting of Cog1 to Cog4 and Cog5 to Cog8, respectively (Fig. 1). The two lobes appear to be interconnected by thin rods and/or globules. Cog1p is likely a bridging subunit between the two COG lobes in yeast (Fotso et al. 2005). The bridge that joins lobe A and lobe B in the mammalian COG complex is similarly composed of Cog1 and Cog8 (Oka et al. 2005; Ungar et al. 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bruinsma P, Spelbrink RG, Nothwehr SF (2004) Retrograde transport of the mannosyl-transferase Och1p to the early Golgi requires a component of the COG transport complex. J Biol Chem 279: 39814–39823

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh LF, Chen X, Richardson BC, Ungar D, Pelczer I, Rizo J, Hughson FM (2007) Structural analysis of conserved oligomeric Golgi complex subunit 2. J Biol Chem 282: 23418–23426

    Article  PubMed  CAS  Google Scholar 

  • Farkas RM, Giansanti MG, Gatti M, Fuller MT (2003) The Drosophila Cog5 homologue is required for cytokinesis, cell elongation, and assembly of specialized Golgi architecture during spermatogenesis. Mol Biol Cell 14: 190–200

    Article  PubMed  CAS  Google Scholar 

  • Fotso P, Koryakina Y, Pavliv O, Tsiomenko AB, Lupashin VV (2005) Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J Biol Chem 280: 27613–27623

    Article  PubMed  CAS  Google Scholar 

  • Foulquier F, Ungar D, Reynders E, Zeevaert R, Mills P, Garcia-Silva MT, Briones P, Winchester B, Morelle W, Krieger M, Annaert W, Matthijs G (2007) A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation. Hum Mol Genet 16(7): 717–730

    Article  PubMed  CAS  Google Scholar 

  • Foulquier F, Vasile E, Schollen E, Callewaert N, Raemaekers T, Quelhas D, Jaeken J, Mills P, Winchester B, Krieger M, Annaert W, Matthijs G (2006) Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc Natl Acad Sci USA 103: 3764–3769

    Article  PubMed  CAS  Google Scholar 

  • Freeze HH (2007) Congenital Disorders of Glycosylation: CDG-I, CDG-II, and beyond. Curr Mol Med 7(4): 389–396

    Article  PubMed  CAS  Google Scholar 

  • Fridmann-Sirkis Y, Kent HM, Lewis MJ, Evans PR, Pelham HR (2006) Structural analysis of the interaction between the SNARE Tlg1 and Vps51. Traffic 7: 182–190

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist A, Au CE, Hiding J, Bell AW, Fernandez-Rodriguez J, Lesimple S, Nagaya H, Roy L, Gosline SJ, Hallett M, Paiement J, Kearney RE, Nilsson T, Bergeron JJ (2006) Quantitative proteomics analysis of the secretory pathway. Cell 127: 1265–1281

    Article  PubMed  CAS  Google Scholar 

  • Hsu SC, TerBush D, Abraham M, Guo W (2004) The exocyst complex in polarized exocytosis. Int Rev Cytol 233: 243–265

    Article  PubMed  CAS  Google Scholar 

  • Kim DW, Massey T, Sacher M, Pypaert M, Ferro-Novick S (2001) Sgf1p, a new component of the Sec34p/Sec35p complex. Traffic 2: 820–830

    Article  PubMed  CAS  Google Scholar 

  • Kim DW, Sacher M, Scarpa A, Quinn AM, Ferro-Novick S (1999) High-copy suppressor analysis reveals a physical interaction between Sec34p and Sec35p, a protein implicated in vesicle docking. Mol Biol Cell 10: 3317–3329

    PubMed  CAS  Google Scholar 

  • Kingsley DM, Kozarsky KF, Segal M, Krieger M (1986) Three types of low density lipoprotein receptor-deficient mutant have pleiotropic defects in the synthesis of N-linked, O-linked, and lipid-linked carbohydrate chains. J Cell Biol 102: 1576–1585

    Article  PubMed  CAS  Google Scholar 

  • Kingsley DM, Krieger M (1984) Receptor-mediated endocytosis of low density lipoprotein: somatic cell mutants define multiple genes required for expression of surface-receptor activity. Proc Natl Acad Sci USA 81: 5454–5458

    Article  PubMed  CAS  Google Scholar 

  • Koumandou VL, Dacks JB, Coulson RM, Field MC (2007) Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol Biol 7: 29

    Article  PubMed  Google Scholar 

  • Kranz C, Ng BG, Sun L, Sharma V, Eklund EA, Miura Y, Ungar D, Lupashin V, Winkel RD, Cipollo JF, Costello CE, Loh E, Hong W, Freeze HH (2007) COG8 deficiency causes new congenital disorder of glycosylation type IIh. Hum Mol Genet 16: 731–741

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y, Sano M, Goda S, Suzuki N, Nishiwaki K (2006) The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans. Development 133: 263–273

    Article  PubMed  CAS  Google Scholar 

  • Letourneur F, Gaynor EC, Hennecke S, Démollière C, Duden R, Emr SD, Riezman H, Cosson P (1994) Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79: 1199–1207

    Article  PubMed  CAS  Google Scholar 

  • Liewen H, Meinhold-Heerlein I, Oliveira V, Schwarzenbacher R, Luo G, Wadle A, Jung M, Pfreundschuh M, Stenner-Liewen F (2005) Characterization of the human GARP (Golgi associated retrograde protein) complex. Exp Cell Res 306: 24–34

    Article  PubMed  CAS  Google Scholar 

  • Morava E, Zeevaert R, Korsch E, Huijben K, Wopereis S, Matthijs G, Keymolen K, Lefeber DJ, De Meirleir L, Wevers RA (2007) A common mutation in the COG7 gene with a consistent phenotype including microcephaly, adducted thumbs, growth retardation, VSD and episodes of hyperthermia. Eur J Hum Genet 15: 638–645

    Article  PubMed  CAS  Google Scholar 

  • Ng BG, Kranz C, Hagebeuk EE, Duran M, Abeling NG, Wuyts B, Ungar D, Lupashin V, Hartdorff CM, Poll-The BT, Freeze HH (2007) Molecular and clinical characterization of a Moroccan Cog7 deficient patient. Mol Genet Metab 91: 201–204

    Article  PubMed  CAS  Google Scholar 

  • Oka T, Ungar D, Hughson FM, Krieger M (2004) The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. Mol Biol Cell 15:2423–2435

    Article  PubMed  CAS  Google Scholar 

  • Oka T, Vasile E, Penman M, Novina CD, Dykxhoorn DM, Ungar D, Hughson FM, Krieger M (2005) Genetic analysis of the subunit organization and function of the conserved oligomeric Golgi (COG) complex: studies of COG5-and COG7-deficient mammalian cells. J Biol Chem 280: 32736–32745

    Article  PubMed  CAS  Google Scholar 

  • Price A, Seals D, Wickner W, Ungermann C (2000) The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. J Cell Biol 148: 1231–1238

    Article  PubMed  CAS  Google Scholar 

  • Ram RJ, Li B, Kaiser CA (2002) Identification of sec36p, sec37p, and sec38p: components of yeast complex that contains sec34p and sec35p. Mol Biol Cell 13: 1484–1500

    Article  PubMed  CAS  Google Scholar 

  • Shestakova A, Suvorova E, Pavliv O, Khaidakova G, Lupashin V (2007) Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J Cell Biol 179(6): 1179–1192

    Article  PubMed  CAS  Google Scholar 

  • Shestakova A, Zolov S, Lupashin V (2006) COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7:191–204

    Article  PubMed  CAS  Google Scholar 

  • Sohda M, Misumi Y, Yoshimura S, Nakamura N, Fusano T, Ogata S, Sakisaka S, Ikehara Y (2007) The interaction of two tethering factors, p115 and COG complex, is required for Golgi integrity. Traffic 8: 270–284

    Article  PubMed  CAS  Google Scholar 

  • Steet R, Kornfeld S (2006) COG-7-deficient human fibroblasts exhibit altered recycling of Golgi proteins. Mol Biol Cell 17: 2312–2321

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Shestakova A, Hunt L, Sehgal S, Lupashin V, Storrie B (2007) Rab6 Regulates Both ZW10/RINT-1 and COG complex dependent Golgi trafficking and homeostasis. Mol Biol Cell 18(10):\ 4129–4142

    Article  PubMed  CAS  Google Scholar 

  • Suvorova E, Lupashin W (2002) COG complex interacts with the components of the Golgi tethering machinery. Mol Biol Cell 13: 266A–266A

    Google Scholar 

  • Suvorova ES, Duden R, Lupashin W (2002) The Sec34/Sec35p complex, a Ypt1 p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol 157: 631–643

    Article  PubMed  CAS  Google Scholar 

  • Suvorova ES, Kurten RC, Lupashin W (2001) Identification of a human orthologue of Sec34p as a component of the cis-Golgi vesicle tethering machinery. J Biol Chem 276: 22810–22818

    Article  PubMed  CAS  Google Scholar 

  • Sztul E, Lupashin V (2006) Role of tethering factors in secretory membrane traffic. Am J Phys Cell Physiol 290: C11–C26

    Article  CAS  Google Scholar 

  • Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Menard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C (2004) Global mapping of the yeast genetic interaction network. Science 303: 808–813

    Article  PubMed  CAS  Google Scholar 

  • Ungar D, Oka T, Brittle EE, Vasile E, Lupashin VV, Chatterton JE, Heuser JE, Krieger M, Waters MG (2002) Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 157:405–415

    Article  PubMed  CAS  Google Scholar 

  • Ungar D, Oka T, Vasile E, Krieger M, Hughson FM (2005) Subunit architecture of the conserved oligomeric Golgi complex. J Biol Chem 280: 32729–32735

    Article  PubMed  CAS  Google Scholar 

  • Van Rheenen SM, Cao X, Lupashin VV, Barlowe C, Waters MG (1998) Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking. J Cell Biol 141: 1107–1119

    Article  Google Scholar 

  • Van Rheenen SM, Cao X, Sapperstein SK, Chiang EC, Lupashin VV, Barlowe C, Waters MG (1999) Sec34p, a protein required for vesicle tethering to the yeast Golgi apparatus, is in a complex with Sec35p. J Cell Biol 147: 729–742

    Article  Google Scholar 

  • Vasile E, Oka T, Ericsson M, Nakamura N, Krieger M (2006) IntraGolgi distribution of the Conserved Oligomeric Golgi (COG) complex. Exp Cell Res 312: 3132–3141

    Article  PubMed  CAS  Google Scholar 

  • Walter DM, Paul KS, Waters MG (1998) Purification and characterization of a novel 13 S hetero-oligomeric protein complex that stimulates in vitro Golgi transport. J Biol Chem 273: 29565–29576

    Article  PubMed  CAS  Google Scholar 

  • Whyte JR, Munro S (2001) The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 1: 527–537

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Steet RA, Bohorov O, Bakker J, Newell J, Krieger M, Spaapen L, Kornfeld S, Freeze HH (2004) Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med 10: 518–523

    Article  PubMed  CAS  Google Scholar 

  • Wuestehube LJ, Duden R, Eun A, Hamamoto S, Korn P, Ram R, Schekman R (1996) New mutants of Saccharomyces cerevisiae affected in the transport of proteins from the endoplasmic reticulum to the Golgi complex. Genetics 142: 393–406

    PubMed  CAS  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2: 107–117

    Article  PubMed  CAS  Google Scholar 

  • Zolov SN, Lupashin W (2005) Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 168: 747–759

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Lupashin, V., Ungar, D. (2008). COG complex. In: Mironov, A.A., Pavelka, M. (eds) The Golgi Apparatus. Springer, Vienna. https://doi.org/10.1007/978-3-211-76310-0_9

Download citation

Publish with us

Policies and ethics