Skip to main content
  • 1391 Accesses

Abstract

Eukaryotic cells contain multiple membrane-bound compartments between which proteins and lipid molecules are continually shuttled via membrane-bound vesicular carriers. Despite the constant flux of proteins and lipid through these compartments their functional and composition integrity is maintained. While the molecular machinery involved in vesicle recognition and fusion can often be transport-step/fusion-event specific, one group of proteins & #x2014; the SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) play a common and central role in this process. Transport-step-specific combinations of SNARE proteins, localized to the vesicle and the target organelle, form complexes that facilitate the final step leading to the fusion of vesicles with their cognate target organelles. In general, the role of SNAREs appears to be conserved irrespective of their location of function in the cell, and much of what has been established for SNAREs in a particular trafficking pathway or organelle, is broadly applicable to SNAREs that function in the Golgi. Here we review Golgi SNAREs and the role they play in membrane and protein trafficking in the Golgi apparatus with, a particular emphasis on their functions in yeast and human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan BB, Moyer BD, Balch WE (2000) Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289: 444–448

    Article  PubMed  CAS  Google Scholar 

  • Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR (2002) Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat Struct Biol 9: 107–111

    Article  PubMed  CAS  Google Scholar 

  • Arac D, Dulubova I, Pei J, Huryeva I, Grishin NV, Rizo J (2005) Three-dimensional structure of the rSly1 N-terminal domain reveals a conformational change induced by binding to syntaxin 5. J Mol Biol 346: 589–601

    Article  PubMed  CAS  Google Scholar 

  • Ballensiefen W, Ossipov D, Schmitt HD (1998) Recycling of the yeast v-SNARE Sec22p involves COPI-proteins and the ER transmembrane proteins Ufe1 p and Sec20p. J Cell Sci 111(Pt 11): 1507–1520

    PubMed  CAS  Google Scholar 

  • Banfield DK (2001) SNARE complexes & #x2014; is there sufficient complexity for vesicle targeting specificity? Trends Biochem Sci 26: 67–68

    Article  PubMed  CAS  Google Scholar 

  • Banfield DK, Lewis MJ, Rabouille C, Warren G, Pelham HR (1994) Localization of Sed5, a putative vesicle targeting molecule, to the cis-Golgi network involves both its transmembrane and cytoplasmic domains. J Cell Biol 127: 357–371

    Article  PubMed  CAS  Google Scholar 

  • Bentley M, Liang Y, Mullen K, Xu D, Sztul E, Hay JC (2006) SNARE status regulates tether recruitment and function in homotypic COPII vesicle fusion. J Biol Chem 281: 38825–38833

    Article  PubMed  CAS  Google Scholar 

  • Bethani I, Lang T, Geumann U, Sieber JJ, Jahn R, Rizzoli SO (2007) The specificity of SNARE pairing in biological membranes is mediated by both proof-reading and spatial segregation. EMBO J 26: 3981–3992

    Article  PubMed  CAS  Google Scholar 

  • Bock JB, Matern HT, Peden AA, Scheller RH (2001 ) A genomic perspective on membrane compartment organization. Nature 409: 839–841

    Article  PubMed  CAS  Google Scholar 

  • Bracher A, Weissenhorn W (2002) Structural basis for the Golgi membrane recruitment of Sly1pby Sed5p. EMBO J 21:6114–6124

    Article  PubMed  CAS  Google Scholar 

  • Brandon E, Szul T, Alvarez C, Grabski R, Benjamin R, Kawai R, Sztul E (2006) On and off membrane dynamics of the endoplasmic reticulum-Golgi tethering factor p115 in vivo. Mol Biol Cell 17: 2996–3008

    Article  PubMed  CAS  Google Scholar 

  • Bretscher MS, Munro S (1993) Cholesterol and the Golgi apparatus. Science 261: 1280–1281

    Article  PubMed  CAS  Google Scholar 

  • Brunger AT, DeLaBarre B (2003) NSF and p97/VCP: similar at first, different at last. FEBS Lett 555: 126–133

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Ballew N, Barlowe C (1998) Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J 17: 2156–2165

    Article  PubMed  CAS  Google Scholar 

  • Charest A, Lane K, McMahon K, Housman DE (2001) Association of a novel PDZ domain-containing peripheral Golgi protein with the Q-SNARE (Q-soluble N-ethylmalei-mide-sensitive fusion protein (NSF) attachment protein receptor) protein syntaxin 6. J Biol Chem 276: 29456–29465

    Article  PubMed  CAS  Google Scholar 

  • Chiu R, Novikov L, Mukherjee S, Shields D (2002) A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis. J Cell Biol 159: 637–648

    Article  PubMed  CAS  Google Scholar 

  • Cosson P, Ravazzola M, Varlamov O, Sllner TH, Di Liberto M, Volchuk A, Rothman JE, Orci L (2005) Dynamic transport of SNARE proteins in the Golgi apparatus. Proc Natl Acad Sci USA 102: 14647–14652

    Article  PubMed  CAS  Google Scholar 

  • Diao A, Frost L, Morohashi Y, Lowe M (2007) Coordination of golgin tethering and SNARE assembly: GM130 binds syntaxin 5 in a p115-regulated manner. J Biol Chem 283:6957–6967

    Article  PubMed  CAS  Google Scholar 

  • Dietrich LE, Gurezka R, Veit M, Ungermann C (2004) The SNARE Ykt6 mediates protein palmitoylation during an early stage of homotypic vacuole fusion. EMBO J 23:45–53

    Article  PubMed  CAS  Google Scholar 

  • Dulubova I, Yamaguchi T, Arac D, Li H, Huryeva I, Min SW, Rizo J, Sudhof TC (2003) Convergence and divergence in the mechanism of SNARE binding by Sec1/Munc18-like proteins. Proc Natl Acad Sci USA 100: 32–37

    Article  PubMed  CAS  Google Scholar 

  • Dulubova I, Yamaguchi T, Gao Y, Min SW, Huryeva I, Sudhof TC, Rizo J (2002) How Tlg2p/syntaxin 16’ snares’ Vps45. EMBO J 21: 3620–3631

    Article  PubMed  CAS  Google Scholar 

  • Fasshauer D, Antonin W, Margittai M, Pabst S, Jahn R (1999) Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J Biol Chem 274: 15440–15446

    Article  PubMed  CAS  Google Scholar 

  • Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q-and R-SNAREs. Proc Natl Acad Sci USA 95: 15781–15786

    Article  PubMed  CAS  Google Scholar 

  • Fotso P, Koryakina Y, Pavliv O, Tsiomenko AB, Lupashin VV (2005) Coglp plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J Biol Chem 280: 27613–27623

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa M, Varlamov O, Eng WS, Sollner TH, Rothman JE (2004) Localization and activity of the SNARE Ykt6 determined by its regulatory domain and palmitoylation. Proc Natl Acad Sci USA 101: 4815–4820

    Article  PubMed  CAS  Google Scholar 

  • Furst J, Sutton RB, Chen J, Brunger AT, Grigorieff N (2003) Electron cryomicroscopy structure of N-etyl maleimide sensitive factor at 11 A resolution. EMBO J 22: 4365–4374

    Article  PubMed  CAS  Google Scholar 

  • Ganley IG, Espinosa E, Pfeffer SR (2008) A syntaxin 10-SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells. J Cell Biol 180: 159–172

    Article  PubMed  CAS  Google Scholar 

  • Gerst JE (2003) SNARE regulators: matchmakers and matchbreakers. Biochim Biophys Acta 1641:99–110

    Article  PubMed  CAS  Google Scholar 

  • Graf CT, Riedel D, Schmitt HD, Jahn R (2005) Identification of functionally interacting SNAREs by using complementary substitutions in the conserved ‘0’ layer. Mol Biol Cell 16:2263–2274

    Article  PubMed  CAS  Google Scholar 

  • Han X, Wang CT, Bai J, Chapman ER, Jackson MB (2004) Transmembrane segments of syntaxin line the fusion pore of Ca2 +-triggered exocytosis. Science 304: 289–292

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa H, Yang Z, Oltedal L, Davanger S, Hay JC (2004) Intramolecular protein-protein and protein-lipid interactions control the conformation and subcellular targeting of neuronal Ykt6. J Cell Sci 117: 4495–4508

    Article  PubMed  CAS  Google Scholar 

  • Hay JC, Klumperman J, Oorschot V, Steegmaier M, Kuo CS, Scheller RH (1998) Localization, dynamics, and protein interactions reveal distinct roles for ER and Golgi SNAREs. J Cell Biol 141: 1489–1502

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R, Rapoport TA (2005) Generation of nonidentical compartments in vesicular transport systems. J Cell Biol 168: 271–280

    Article  PubMed  CAS  Google Scholar 

  • Hicks SW, Machamer CE (2005) Isoform-specific interaction of golgin-160 with the Golgi-associated protein PIST. J Biol Chem 280: 28944–28951

    Article  PubMed  CAS  Google Scholar 

  • Hohl TM, Parlati F, Wimmer C, Rothman JE, Sollner TH, Engelhardt H (1998) Arrangement of subunits in 20 S particles consisting of NSF, SNAPs, and SNARE complexes. Mol Cell 2: 539–548

    Article  PubMed  CAS  Google Scholar 

  • Honda A, Al-Awar OS, Hay JC, Donaldson JG (2005) Targeting of Arf-1 to the early Golgi by membrin, an ER-Golgi SNARE. J Cell Biol 168: 1039–1051

    Article  PubMed  CAS  Google Scholar 

  • Joglekar AP, Xu D, Rigotti DJ, Fairman R, Hay JC (2003) The SNARE motif contributes to rbet1 intracellular targeting and dynamics independently of SNARE interactions. J Biol Chem 278: 14121–14133

    Article  PubMed  CAS  Google Scholar 

  • Katz L, Brennwald P (2000) Testing the 3Q:1R “rule”: mutational analysis of the ionic “zero” layer in the yeast exocytic SNARE complex reveals no requirement for arginine. Mol Biol Cell 11: 3849–3858

    PubMed  CAS  Google Scholar 

  • Kim YG, Raunser S, Munger C, Wagner J, Song YL, Cygler M, Walz T, Oh BH, Sacher M (2006) The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering. Cell 127: 817–830

    Article  PubMed  CAS  Google Scholar 

  • Kosodo Y, Noda Y, Adachi H, Yoda K (2002) Binding of Sly 1 to Sed5 enhances formation of the yeast early Golgi SNARE complex. J Cell Sci 115:3683–3691

    Article  PubMed  CAS  Google Scholar 

  • Kweon Y, Rothe A, Conibear E, Stevens TH (2003) Ykt6p is a multifunctional yeast R-SNARE that is required for multiple membrane transport pathways to the vacuole. Mol Biol Cell 14: 1868–1881

    Article  PubMed  CAS  Google Scholar 

  • Lane JD, Lucocq J, Pryde J, Barr FA, Woodman PG, Allan VJ, Lowe M (2002) Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J Cell Biol 156: 495–509

    Article  PubMed  CAS  Google Scholar 

  • Lane JD, Vergnolle MA, Woodman PG, Allan VJ (2001) Apoptotic cleavage of cyto-plasmicdynein intermediate chain and p150(Glued) stops dynein-dependent membrane motility. J Cell Biol 153: 1415–1426

    Article  PubMed  CAS  Google Scholar 

  • Legesse-Miller A, Sagiv Y, Glozman R, Elazar Z (2000) Aut7p, a soluble autophagic factor, participates in multiple membrane trafficking processes. J Biol Chem 275: 32966–32973

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Gallwitz D, Peng R (2005) Structure-based functional analysis reveals a role for the SM protein Sly1p in retrograde transport to the endoplasmic reticulum. Mol Biol Cell 16:3951–3962

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Barlowe C (2002) Analysis of Sec22p in endoplasmic reticulum/Golgi transport reveals cellular redundancy in SNARE protein function. Mol Biol Cell 13: 3314–3324

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Flanagan JJ, Barlowe C (2004) Sec22p export from the endoplasmic reticulum is independent of SNARE pairing. J Biol Chem 279: 27225–27232

    Article  PubMed  CAS  Google Scholar 

  • Lowe M, Lane JD, Woodman PG, Allan VJ (2004) Caspase-mediated cleavage of Syntaxin 5 and giantin accompanies inhibition of secretory traffic during apoptosis. J Cell Sci 117: 1139–1150

    Article  PubMed  CAS  Google Scholar 

  • Lupashin VV, Pokrovskaya ID, McNew JA, Waters MG (1997) Characterization of a novel yeast SNARE protein implicated in Golgi retrograde traffic. Mol Biol Cell 8: 2659–2676

    PubMed  CAS  Google Scholar 

  • Mancias JD, Goldberg J (2007) The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope. Mol Cell 26:403–414

    Article  PubMed  CAS  Google Scholar 

  • Mancini M, Machamer CE, Roy S, Nicholson DW, Thornberry NA, Casciola-Rosen LA, Rosen A (2000) Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 149: 603–612

    Article  PubMed  CAS  Google Scholar 

  • Marz KE, Lauer JM, Hanson PI (2003) Defining the SNARE complex binding surface of alpha-SNAP: implications for SNARE complex disassembly. J Biol Chem 278: 27000–27008

    Article  PubMed  CAS  Google Scholar 

  • McNew JA, Weber T, Engelman DM, Sollner TH, Rothman JE (1999) The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol Cell 4: 415–421

    Article  PubMed  CAS  Google Scholar 

  • McNew JA, Weber T, Parlati F, Johnston RJ, Melia TJ, Sollner TH, Rothman JE (2000) Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J Cell Biol 150: 105–117

    Article  PubMed  CAS  Google Scholar 

  • Melia TJ, Weber T, McNew JA, Fisher LE, Johnston RJ, Parlati F, Mahal LK, Sollner TH, Rothman JE (2002) Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J Cell Biol 158: 929–940

    Article  PubMed  CAS  Google Scholar 

  • Montecucco C, Schiavo G, Pantano S (2005) SNARE complexes and neuroexocytosis: how many, how close? Trends Biochem Sci 30: 367–372

    Article  PubMed  CAS  Google Scholar 

  • Morsomme P, Prescianotto-Baschong C, Riezman H (2003) The ER v-SNAREs are required for GPI-anchored protein sorting from other secretory proteins upon exit from the ER. J Cell Biol 162:403–412

    Article  PubMed  CAS  Google Scholar 

  • Mossessova E, Bickford LC, Goldberg J (2003) SNARE selectivity of the COPII coat. Cell 114: 483–495

    Article  PubMed  CAS  Google Scholar 

  • Muller JM, Shorter J, Newman R, Deinhardt K, Sagiv Y, Elazar Z, Warren G, Shima DT (2002) Sequential SNARE disassembly and GATE-16-GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion. J Cell Biol 157: 1161–1173

    Article  PubMed  Google Scholar 

  • Nilsson T, Slusarewicz P, Hoe MH, Warren G (1993) Kin recognition. A model for the retention of Golgi enzymes. FEBS Lett 330: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Oka T, Krieger M (2005) Multi-component protein complexes and Golgi membrane trafficking. J Biochem (Tokyo) 137: 109–114

    CAS  Google Scholar 

  • Oka T, Ungar D, Hughson FM, Krieger M (2004) The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. Mol Biol Cell 15:2423–2435

    Article  PubMed  CAS  Google Scholar 

  • Ossipov D, Schroder-Kohne S, Schmitt HD (1999) Yeast ER-Golgi v-SNAREs Boslp and Betlp differ in steady-state localization and targeting. J Cell Sci 112(Pt 22): 4135–4142

    PubMed  CAS  Google Scholar 

  • Parlati F, McNew JA, Fukuda R, Miller R, Sollner TH, Rothman JE (2000) Topological restriction of SNARE-dependent membrane fusion. Nature 407: 194–198

    Article  PubMed  CAS  Google Scholar 

  • Parlati F, Varlamov O, Paz K, McNew JA, Hurtado D, Sollner TH, Rothman JE (2002) Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc Natl Acad Sci USA 99: 5424–5429

    Article  PubMed  CAS  Google Scholar 

  • Paumet F, Rahimian V, Rothman JE (2004) The specificity of SNARE-dependent fusion is encoded in the SNARE motif. Proc Natl Acad Sci USA 101: 3376–3380

    Article  PubMed  CAS  Google Scholar 

  • Peng R, Gallwitz D (2004) Multiple SNARE interactions of an SM protein: Sed5p/Sly1p binding is dispensable for transport. EMBO J 23: 3939–3949

    Article  PubMed  CAS  Google Scholar 

  • Peng R, Gallwitz D (2002) Sly 1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J Cell Biol 157: 645–655

    Article  PubMed  CAS  Google Scholar 

  • Pobbati AV, Stein A, Fasshauer D (2006) N-to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313: 673–676

    Article  PubMed  CAS  Google Scholar 

  • Prekeris R, Klumperman J, Scheller RH (2000) Syntaxin 11 is an atypical SNARE abundant in the immune system. Eur J Cell Biol 79: 771–780

    Article  PubMed  CAS  Google Scholar 

  • Puthenveedu MA, Linstedt AD (2004) Gene replacement reveals that p115/SNARE interactions are essential for Golgi biogenesis. Proc Natl Acad Sci USA 101: 1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Rayner JC, Pelham HR (1997) Transmembrane domain-dependent sorting of proteinsto the ER and plasma membrane in yeast. EMBO J 16: 1832–1841

    Article  PubMed  CAS  Google Scholar 

  • Rein U, Andag U, Duden R, Schmitt HD, Spang A (2002) ARF-GAP-mediated interaction between the ER-Golgi v-SNAREs and the COPI coat. J Cell Biol 157: 395–404

    Article  PubMed  CAS  Google Scholar 

  • Rickman C, Hu K, Carroll J, Davletov B (2005) Self-assembly of SNARE fusion proteins into star-shaped oligomers. Biochem J 388: 75–79

    Article  PubMed  CAS  Google Scholar 

  • Sagiv Y, Legesse-Miller A, Porat A, Elazar Z (2000) GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J 19: 1494–1504

    Article  PubMed  CAS  Google Scholar 

  • Sapperstein SK, Lupashin VV, Schmitt HD, Waters MG (1996) Assembly of the ER to Golgi SNARE complex requires Usolp. J Cell Biol 132: 755–767

    Article  PubMed  CAS  Google Scholar 

  • Sapperstein SK, Walter DM, Grosvenor AR, Heuser JE, Waters MG (1995) p115 is a general vesicular transport factor related to the yeast endoplasmic reticulum to Golgi transport factor Usolp. Proc Natl Acad Sci USA 92: 522–526

    Article  PubMed  CAS  Google Scholar 

  • Schindler C, Spang A (2007) Interaction of SNAREs with ArfGAPs precedes recruitment of Sec18p/NSF. Mol Biol Cell 18: 2852–2863

    Article  PubMed  CAS  Google Scholar 

  • Schlenker O, Hendricks A, Sinning I, Wild K (2006) The structure of the mammalian signal recognition particle (SRP) receptor as prototype for the interaction of small GTPases with Longin domains. J Biol Chem 281: 8898–8906

    Article  PubMed  CAS  Google Scholar 

  • Shestakova A, Suvorova E, Pavliv O, Khaidakova G, Lupashin V (2007) Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J Cell Biol 179: 1179–1192

    Article  PubMed  CAS  Google Scholar 

  • Shorter J, Beard MB, Seemann J, Dirac-Svejstrup AB, Warren G (2002) Sequential tethering of Golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. J Cell Biol 157: 45–62

    Article  PubMed  CAS  Google Scholar 

  • Siddiqi SA, Siddiqi S, Mahan J, Peggs K, Gorelick FS, Mansbach CM II (2006) The identification of a novel endoplasmic reticulum to Golgi SNARE complex used by the prechylomicron transport vesicle. J Biol Chem 281: 20974–20982

    Article  PubMed  CAS  Google Scholar 

  • Snyder DA, Kelly ML, Woodbury DJ (2006) SNARE complex regulation by phosphorylation. Cell Biochem Biophys 45: 111–123

    Article  PubMed  CAS  Google Scholar 

  • Sorensen JB, Wiederhold K, Muller EM, Milosevic I, Nagy G, De Groot BL, Grubmuller H, Fasshauer D (2006) Sequential N-to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J 25: 955–966

    Article  PubMed  CAS  Google Scholar 

  • Spang A, Schekman R (1998) Reconstitution of retrograde transport from the Golgi to the ER in vitro. J Cell Biol 143: 589–599

    Article  PubMed  CAS  Google Scholar 

  • Stone S, Sacher M, Mao Y, Carr C, Lyons P, Quinn AM, Ferro-Novick S (1997) Betlp activates the v-SNARE Boslp. Mol Biol Cell 8: 1175–1181

    PubMed  CAS  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395: 347–353

    Article  PubMed  CAS  Google Scholar 

  • Suvorova ES, Duden R, Lupashin W (2002) The Sec34/Sec35p complex, a Ypt1 p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol 157: 631–643

    Article  PubMed  CAS  Google Scholar 

  • Sztul E, Lupashin V (2006) Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 290, C11–C26

    Article  PubMed  CAS  Google Scholar 

  • Tochio H, Tsui MM, Banfield DK, Zhang M (2001) An autoinhibitory mechanism for nonsyntaxin SNARE proteins revealed by the structure of Ykt6p. Science 293: 698–702

    Article  PubMed  CAS  Google Scholar 

  • Tsui MM, Banfield DK (2000) Yeast Golgi SNARE interactions are promiscuous. J Cell Sci 113(Pt 1): 145–152

    PubMed  CAS  Google Scholar 

  • Tsui MM, Tai WC, Banfield DK (2001) Selective formation of Sed5p-containing SNARE complexes is mediated by combinatorial binding interactions. Mol Biol Cell 12: 521–538

    PubMed  CAS  Google Scholar 

  • Valdez-Taubas J, Pelham H (2005) Swf 1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation. EMBO J 24: 2524–2532

    Article  PubMed  CAS  Google Scholar 

  • Varlamov O, Volchuk A, Rahimian V, Doege CA, Paumet F, Eng WS, Arango N, Parlati F, Ravazzola M, Orci L, Sollner TH, Rothman JE (2004) i-SNAREs: inhibitory SNAREsthat fine-tune the specificity of membrane fusion. J Cell Biol 164: 79–88

    Article  PubMed  CAS  Google Scholar 

  • Veit M (2004) The human SNARE protein Ykt6 mediates its own palmitoylation at C-terminal cysteine residues. Biochem J 384: 233–237

    Article  PubMed  CAS  Google Scholar 

  • Veit M (2000) Palmitoylation of the 25-kDa synaptosomal protein (SNAP-25) in vitro occurs in the absence of an enzyme, but is stimulated by binding to syntaxin. Biochem J 345(Pt 1): 145–151

    Article  PubMed  CAS  Google Scholar 

  • Vogel K, Roche PA (1999) SNAP-23 and SNAP-25 are palmitoylated in vivo. Biochem Biophys Res Commun 258: 407–410

    Article  PubMed  CAS  Google Scholar 

  • Volchuk A, Ravazzola M, Perrelet A, Eng WS, Di Liberto M, Varlamov O, Fukasawa M, Engel T, Sollner TH, Rothman JE, Orci L (2004) Countercurrent distribution of two distinct SNARE complexes mediating transport within the Golgi stack. Mol Biol Cell 15: 1506–1518

    Article  PubMed  CAS  Google Scholar 

  • Von Mollard GF, Nothwehr SF, Stevens TH (1997) The yeast v-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pep12p. J Cell Biol 137: 1511–1524

    Article  Google Scholar 

  • Watson RT, Pessin JE (2001) Transmembrane domain length determines intracellular membrane compartment localization of syntaxins 3, 4, and 5. Am J Physiol Cell Physiol 281:C215–C223

    PubMed  CAS  Google Scholar 

  • Weinberger A, Kamena F, Kama R, Spang A, Gerst JE (2005) Control of Golgi morphology and function by Sed5 t-SNARE phosphorylation. Mol Biol Cell 16: 4918–4930

    Article  PubMed  CAS  Google Scholar 

  • Williams AL, Ehm S, Jacobson NC, Xu D, Hay JC (2004) rsly1 binding to Syntaxin 5 is required for endoplasmic reticulum-to-Golgi transport but does not promote SNARE motif accessibility. Mol Biol Cell 15: 162–175

    Article  PubMed  CAS  Google Scholar 

  • Wimmer C, Hohl TM, Hughes CA, Muller SA, Sollner TH, Engel A, Rothman JE (2001) Molecular mass, stoichiometry, and assembly of 20 S particles. J Biol Chem 276: 29091–29097

    Article  PubMed  CAS  Google Scholar 

  • Wooding S, Pelham HR (1998) The dynamics of Golgi protein traffic visualized in living yeast cells. Mol Biol Cell 9: 2667–2680

    PubMed  CAS  Google Scholar 

  • Xu D, Joglekar AP, Williams AL, Hay JC (2000) Subunit structure of a mammalian ER/Golgi SNARE complex. J Biol Chem 275: 39631–39639

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Martin S, James DE, Hong W (2002) GS15 forms a SNARE complex with syntaxin 5, GS28, and Ykt6 and is implicated in traffic in the early cisternae of the Golgi apparatus. Mol Biol Cell 13: 3493–3507

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Zhang F, Su Z, McNew JA, Shin YK (2005) Hemifusion in SNARE-mediated membrane fusion. Nat Struct Mol Biol 12: 417–422

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Dulubova I, Min SW, Chen X, Rizo J, Sudhof TC (2002) Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev Cell 2: 295–305

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Gonzalez L Jr, Prekeris R, Steegmaier M, Advani RJ, Scheller RH (1999) SNARE interactions are not selective. Implications for membrane fusion specificity. J Biol Chem 274: 5649–5653

    Article  PubMed  CAS  Google Scholar 

  • Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, Kuretake S, Yanagida K, Sato A, Toshimori K, Noda T (2002) Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci USA 99: 11211–11216

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Hong W (2001) Ykt6 forms a SNARE complex with syntaxin 5, GS28, and Bet1 and participates in a late stage in endoplasmic reticulum-Golgi transport. J Biol Chem 276: 27480–27487

    Article  PubMed  CAS  Google Scholar 

  • Zolov SN, Lupashin W (2005) Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 168: 747–759

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Banfield, D.K., Hong, W. (2008). SNAREs. In: Mironov, A.A., Pavelka, M. (eds) The Golgi Apparatus. Springer, Vienna. https://doi.org/10.1007/978-3-211-76310-0_4

Download citation

Publish with us

Policies and ethics