Skip to main content

The role of the cytoskeleton in the structure and function of the Golgi apparatus

  • Chapter
The Golgi Apparatus

Abstract

Cellular organelles in mammalian cells are individualized membrane entities that often become spherical. The endoplasmic reticulum (ER) and the Golgi apparatus (GA) are exceptions to this rule, as they are respectively made up of a continuous tubular network and a pile of flat disks. Their unique shapes are regulated by molecular elements (Kepes et al. 2005; Levine and Rabouille 2005), including the cytoskeleton. All cytoskeletal elements, together with cytoskeleton-associated motors and non-motor proteins, have a role in the subcellular positioning, biogenesis and function of most organelles, being particularly relevant in the GA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams AE, Pringle JR (1984) Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol 98: 934–945

    Google Scholar 

  • Ameen NA, Figueroa Y, Salas PJ (2001) Anomalous apical plasma membrane phenotype in CK8-deficient mice indicates a novel role for intermediate filaments in the polarization of simple epithelia. J Cell Sci 114: 563–575

    Google Scholar 

  • Ang AL, Folsch H, Koivisto UM, Pypaert M, Mellman I (2003)The Rab8 GTPaseselectively regulates AP-1 B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J Cell Biol 163: 339–350

    Google Scholar 

  • Arasaki K, Taniguchi M, Tani K, Tagaya M (2006) RINT-1 regulates the localization and entry of ZW10 to the syntaxin 18 complex. Mol Biol Cell 17: 2780–2788

    Google Scholar 

  • Au JS, Puri C, Ihrke G, Kendrick-Jones J, Buss F (2007) MyosinVI is required for sorting of AP-1 B-dependent cargo to the basolateral domain in polarized MDCK cells. J Cell Biol 177: 103–114

    Google Scholar 

  • Axelsson MA, Karlsson NG, Steel DM, Ouwendijk J, Nilsson T, Hansson GC (2001) Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltrans-ferases and changes in the O-glycosylation of mucins. Glycobiology 11: 633–644

    Google Scholar 

  • Bard F, Casano L, Mallabiabarrena A, Wallace E, Saito K, Kitayama H, Guizzunti G, Hu Y, Wendler F, Dasgupta R, Perrimon N, Malhotra V (2006) Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439: 604–607

    Google Scholar 

  • Beck KA, Buchanan JA, Nelson WJ (1997) Golgi membrane skeleton: identification, localization and oligomerization of a 195 kDa ankyrin isoform associated with the Golgi complex. J Cell Sci 110 (Pt 10), 1239–1249

    Google Scholar 

  • Becker B, Melkonian M (1996) The secretory pathway of protists: spatial and functional organization and evolution. Microbiol Rev 60: 697–721

    Google Scholar 

  • Bennett V, Baines AJ (2001)Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81: 1353–1392

    Google Scholar 

  • Berezuk MA, Schroer TA (2007) Dynactin enhances the processivity of kinesin-2. Traffic 8:124–129

    Google Scholar 

  • Blancaflor EB (2002) The cytoskeleton and gravitropism in higher plants. J Plant Growth Regul 21: 120–136

    Google Scholar 

  • Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    Google Scholar 

  • Bornens M (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14: 25–34

    Google Scholar 

  • Boutte Y, Vernhettes S, Satiat-Jeunemaitre B (2007) Involvement of the cytoskeleton in the secretory pathway and plasma membrane organisation of higher plant cells. Cell Biol Int 31: 649–654

    Google Scholar 

  • Brandizzi F, Saint-Jore C, Moore I, Hawes C (2003) The relationship between endomem-branes and the plant cytoskeleton. Cell Biol Int 27: 177–179

    Google Scholar 

  • Brazer SC, Williams HP, Chappell TG, Cande WZ (2000) A fission yeast kinesin affects Golgi membrane recycling. Yeast 16: 149–166

    Google Scholar 

  • Burgess TL, Skoufias DA, Wilson L (1991) Disruption of the Golgi apparatus with bref eld in A does not destabilize the associated detyrosinated microtubule network. Cell Motil Cytoskeleton 20: 289–300

    Google Scholar 

  • BurkhardtJK, Echeverri CJ, Nilsson T, Vallee RB (1997) Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 139: 469–484

    Google Scholar 

  • Buss F, Spudich G, Kendrick-Jones J (2004) Myosin VI: cellular functions and motor properties. Annu Rev Cell Dev Biol 20: 649–676

    Google Scholar 

  • Camera P, da Silva JS, Griffiths G, Giuffrida MG, Ferrara L, Schubert V, Imarisio S, Silengo L, Dotti CG, Di Cunto F (2003) Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation. Nat Cell Biol 5: 1071–1078

    Google Scholar 

  • Cao H, Weller S, Orth JD, Chen J, Huang B, Chen JL, Stamnes M, McNiven MA (2005) Actin and Arf1-dependent recruitment of a cortactin-dynamin complex to the Golgi regulates post-Golgi transport. Nat Cell Biol 7: 483–492

    Google Scholar 

  • Carreno S, Engqvist-Goldstein AE, Zhang CX, McDonald KL, Drubin DG (2004) Actin dynam ics coupled to clathrin-coated vesicle formation at the trans-Golgi network. J Cell Biol 165:781–788

    Google Scholar 

  • Caviston JP, Holzbaur EL (2006) Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 16: 530–537

    Google Scholar 

  • Caviston JP, Ross JL, Antony SM, Tokito M, Holzbaur EL (2007) Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc Natl Acad Sci USA 104: 10045–10050

    Google Scholar 

  • Cohen D, Musch A, Rodriguez-Boulan E (2001) Selective control of basolateral membrane protein polarity by cdc42. Traffic 2: 556–564

    Google Scholar 

  • Cole NB, Sciaky N, Marotta A, Song J, Lippincott-Schwartz J (1996) Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol Biol Cell 7: 631–650

    Google Scholar 

  • Corthesy-Theulaz I, Pauloin A, Pfeffer SR (1992) Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J Cell Biol 118: 1333–1345

    Google Scholar 

  • Coulombe PA, Wong P (2004) Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol 6: 699–706

    Google Scholar 

  • Chabin-Brion K, Marceiller J, Perez F, Settegrana C, Drechou A, Durand G, Pous C (2001) The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell 12: 2047–2060

    Google Scholar 

  • Chang L, Goldman RD (2004) Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 5: 601–613

    Google Scholar 

  • Chen JL, Fucini RV, Lacomis L, Erdjument-Bromage H, Tempst P, Stamnes M (2005a) Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles. J Cell Biol 169:383–389

    Google Scholar 

  • Chen JL, Lacomis L, Erdjument-Bromage H, Tempst P, Stamnes M (2004) Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes. FEBS Lett 566: 281–286

    Google Scholar 

  • Chen JL, Xu W, Stamnes M (2005b) In vitro reconstitution of ARF-regulated cytoskeletal dynamics on Golgi membranes. Methods Enzymol 404: 345–358

    Google Scholar 

  • Chen Y, Chen T, Shen S, Zheng M, Guo Y, Lin J, Baluska F, Samaj J (2006) Differential display proteomic analysis of Picea meyeri pollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B. Plant J 47: 174–195

    Google Scholar 

  • Dammermann A, Desai A, Oegema K (2003) The minus end in sight. Curr Biol 13: R614–R624

    Google Scholar 

  • DaSilva LL, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F (2004) Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16: 1753–1771

    Google Scholar 

  • De Anda FC, Pollarolo G, Da Silva JS, Camoletto PG, Feiguin F, Dotti CG (2005) Centro-some localization determines neuronal polarity. Nature 436: 704–708

    Google Scholar 

  • De Matteis MA, Di Campli A, Godi A (2005) The role of the phosphoinositides at the Golgi complex. Biochim Biophys Acta 1744: 396–405

    Google Scholar 

  • De Matteis MA, Morrow JS (2000) Spectrin tethers and mesh in the biosynthetic pathway. J Cell Sci 113 (Pt 13): 2331–2343

    Google Scholar 

  • Deacon SW, Serpinskaya AS, Vaughan PS, Lopez Fanarraga M, Vernos I, Vaughan KT, Gelfand VI (2003) Dynactin is required for bidirectional organelle transport. J Cell Biol 160: 297–301

    Google Scholar 

  • Delacour D, Jacob R (2006) Apical protein transport. Cell Mol Life Sci 63: 2491–2505

    Google Scholar 

  • DePina AS, Wollert T, Langford GM (2007) Membrane associated nonmuscle myosin II functions as a motor for actin-based vesicle transport in clam oocyte extracts. Cell Motil Cytoskeleton 64: 739–755

    Google Scholar 

  • Devarajan P, Stabach PR, De Matteis MA, Morrow JS (1997) Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells. Proc Natl Acad Sci USA 94: 10711–10716

    Google Scholar 

  • Devarajan P, Stabach PR, Mann AS, ArditoT, Kashgarian M, Morrow JS (1996) Identification of a small cytoplasmic ankyrin (AnkG 119) in the kidney and muscle that binds beta I sigma spectrin and associates with the Golgi apparatus. J Cell Biol 133: 819–830

    Google Scholar 

  • Di Campli A, Valderrama F, Babia T, De Matteis MA, Luini A, Egea G (1999) Morphological changes in the Golgi complex correlate with actin cytoskeleton rearrangements. Cell Motil Cytoskeleton 43: 334–348

    Google Scholar 

  • Dubois T, Paleotti O, Mironov AA, Fraisier V, Stradal TE, De Matteis MA, Franco M, Chavrier P (2005) Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nat Cell Biol 7: 353–364

    Google Scholar 

  • Duran JM, Valderrama F, Castel S, Magdalena J, Tomas M, Hosoya H, Renau-Piqueras J, Malhotra V, Egea G (2003) Myosin motors and not actin comets are mediators of the actin-based Golgi-to-endoplasmic reticulum protein transport. Mol Biol Cell 14: 445–459

    Google Scholar 

  • Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR III, Maiato H, Khodjakov A, Akhmanova A, Kaverina I (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 12: 917–930

    Google Scholar 

  • Egea G, Lazaro-Dieguez F, Vilella M (2006) Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol 18: 168–178

    Google Scholar 

  • Eng EW, Bettio A, Ibrahim J, Harrison RE (2007) MTOC reorientation occurs during FcgammaR-mediated phagocytosis in macrophages. Mol Biol Cell 18: 2389–2399

    Google Scholar 

  • Estrada L, Caron E, Gorski JL (2001) Fgd1, the Cdc42guaninenucleotide exchange factor responsible for faciogenital dysplasia, is localized to the subcortical actin cytoskeleton and Golgi membrane. Hum Mol Genet 10: 485–495

    Google Scholar 

  • Fath KR (2005) Characterization of myosin-II binding to Golgi stacks in vitro. Cell Motil Cytoskeleton 60: 222–235

    Google Scholar 

  • Fath KR, Burgess DR (1993) Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein. J Cell Biol 120: 117–127

    Google Scholar 

  • Finger FP, Novick P (2000) Synthetic interactions of the post-Golgi sec mutations of Saccharomyces cerevisiae. Genetics 156: 943–951

    Google Scholar 

  • Fucini RV, Navarrete A, Vadakkan C, Lacomis L, Erdjument-Bromage H, Tempst P, Stamnes M (2000) Activated ADP-ribosylation factor assembles distinct pools of actin on Golgi membranes. J Biol Chem 275: 18824–18829

    Google Scholar 

  • Gao Y, Sztul E (2001) A novel interaction of the Golgi complex with the vimentin intermediate filament cytoskeleton. J Cell Biol 152: 877–894

    Google Scholar 

  • Gao YS, Vrielink A, MacKenzie R, Sztul E (2002) A novel type of regulation of the vimentin intermediate filament cytoskeleton by a Golgi protein. Eur J Cell Biol 81: 391–401

    Google Scholar 

  • Gillard BK, Clement R, Colucci-Guyon E, Babinet C, Schwarzmann G, Taki T, Kasama T, Marcus DM (1998) Decreased synthesis of glycosphingolipids in cells lacking vimentin intermediate filaments. Exp Cell Res 242: 561–572

    Google Scholar 

  • Gillard BK, Thurmon LT, Harrell RG, Capetanaki Y, Saito M, Yu RK, Marcus DM (1994) Biosynthesis of glycosphingolipids is reduced in the absence of a vimentin intermediate filament network. J Cell Sci 107 (Pt 12): 3545–3555

    Google Scholar 

  • Gloss A, Rivero F, Khaire N, Muller R, LoomisWF, Schleicher M, Noegel AA (2003) Villidin, a novel WD-repeat and villin-related protein from Dictyostelium, is associated with membranes and the cytoskeleton. Mol Biol Cell 14: 2716–2727

    Google Scholar 

  • Godi A, Santone I, Pertile P, Devarajan P, Stabach PR, Morrow JS, Di Tullio G, Polishchuk R, Petrucci TC, Luini A, De Matteis MA (1998) ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc Natl Acad Sci USA 95: 8607–8612

    Google Scholar 

  • Grigoriev I, Splinter D, Keijzer N, Wulf PS, Demmers J, Ohtsuka T, Modesti M, Maly IV, Grosveld F, Hoogenraad CC, Akhmanova A (2007) Rab6 regulates transport and targeting of exocytotic carriers. Dev Cell 13: 305–314

    Google Scholar 

  • Haghnia M, Cavalli V, Shah SB, Schimmelpfeng K, Brusch R, Yang G, Herrera C, Pilling A, Goldstein LS (2007) Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol Biol Cell 18: 2081–2089

    Google Scholar 

  • Harada A, Takei Y, Kanai Y, Tanaka Y, Nonaka S, Hirokawa N (1998) Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J Cell Biol 141: 51–59

    Google Scholar 

  • Harsay E, Schekman R (2007) Avl9p, a member of a novel protein superfamily, functions in the late secretory pathway. Mol Biol Cell 18: 1203–1219

    Google Scholar 

  • Hawes C, Satiat-Jeunemaitre B (2005) The plant Golgi apparatus-going with the flow. Biochim Biophys Acta 1744: 93–107

    Google Scholar 

  • Hayden SM, Wolenski JS, Mooseker MS (1990) Binding of brush border myosin I to phospholipid vesicles. J Cell Biol 111:443–451

    Google Scholar 

  • He CY (2007) Golgi biogenesis in simple eukaryotes. Cell Microbiol 9: 566–572

    Google Scholar 

  • He CY, Ho HH, Malsam J, Chalouni C, West CM, Ullu E, Toomre D, Warren G (2004) Golgi duplication in Trypanosoma brucei. J Cell Biol 165: 313–321

    Google Scholar 

  • Hehnly H, Stamnes M (2007) Regulating cytoskeleton-based vesicle motility. FEBS Lett 581:2112–2118

    Google Scholar 

  • Heimann K, Percival JM, Weinberger R, Gunning P, Stow JL (1999) Specific isoforms of actin-binding proteins on distinct populations of Golgi-derived vesicles. J Biol Chem 274:10743–10750

    Google Scholar 

  • Helfand BT, Chang L, Goldman RD (2003) The dynamic and motile properties of intermediate filaments. Annu Rev Cell Dev Biol 19: 445–467

    Google Scholar 

  • Helfand BT, Mikami A, Vallee RB, Goldman RD (2002) A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization. J Cell Biol 157:795–806

    Google Scholar 

  • Henderson GP, Gan L, Jensen GJ (2007) 3-D ultrastructure of O. tauri: electron cryoto-mography of an entire eukaryotic cell. PLoS ONE 2: e749

    Google Scholar 

  • Heuvingh J, Franco M, Chavrier P, Sykes C (2007) ARF1-mediated actin polymerization produces movement of artificial vesicles. Proc Natl Acad Sci USA 104:16928–16933

    Google Scholar 

  • Hirose H, Arasaki K, Dohmae N, Takio K, Hatsuzawa K, Nagahama M, Tani K, Yamamoto A, Tohyama M, Tagaya M (2004) Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. EMBO J 23: 1267–1278

    Google Scholar 

  • Holappa K, Munoz MT, Egea G, Kellokumpu S (2004) The AE2 anion exchanger is necessary for the structural integrity of the Golgi apparatus in mammalian cells. FEBS Lett 564: 97–103

    Google Scholar 

  • Holappa K, Suokas M, Soininen P, Kellokumpu S (2001) Identification of the full-length AE2 (AE2a) isoform as the Golgi-associated anion exchanger in fibroblasts. J Histochem Cytochem 49: 259–269

    Google Scholar 

  • Hoogenraad CC, Akhmanova A, Howell SA Dortland BR, De Zeeuw CI, Willemsen R, Visser P, Grosveld F, Galjart N (2001) Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes. EMBOJ 20:4041–4054

    Google Scholar 

  • Hook P, Vallee RB (2006) The dynein family at a glance. J Cell Sci 119: 4369–4371

    Google Scholar 

  • Hoppeler-Lebel A, Celati C, Bellett G, Mogensen MM, Klein-Hitpass L, Bornens M, Tassin AM (2007) Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex. J Cell Sci 120: 3299–3308

    Google Scholar 

  • Hu Y, Zhong R, Morrison WH III, Ye ZH (2003) The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization. Planta 217: 912–921

    Google Scholar 

  • Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM (1999) GMAP-210, A cis-Golgi network-associated protein, is a minus end microtubule-binding protein. J Cell Biol 145: 83–98

    Google Scholar 

  • Jacob R, Heine M, Alfalah M, Naim HY (2003) Distinct cytoskeletal tracks direct individual vesicle populations to the apical membrane of epithelial cells. Curr Biol 13: 607–612

    Google Scholar 

  • Jenna S, Caruso ME, EmadaliA, Nguyen DT, DominguezM, LiS, Roy R, Reboul J, Vidal M, Tzimas GN, Bosse R, Chevet E (2005) Regulation of membrane trafficking by a novel Cdc42-related protein in Caenorhabditis elegans epithelial cells. Mol Biol Cell 16: 1629–1639

    Google Scholar 

  • Jordens I, Marsman M, Kuijl C, Neefjes J (2005) Rab proteins, connecting transport and vesicle fusion. Traffic 6: 1070–1077

    Google Scholar 

  • Jung E, Fucini P, Stewart M, Noegel AA, Schleicher M (1996) Linking microfilaments to intracellular membranes: the actin-binding and vesicle-associated protein comitin exhibits a mannose-specific lectin activity. EMBO J 15: 1238–1246

    Google Scholar 

  • Jurgens G (2005) Cytokinesis in higher plants. Annu Rev Plant Biol 56: 281–299

    Google Scholar 

  • Kaksonen M, Toret CP, Drubin DG (2006) Harnessing actin dynamics for clathrinmediated endocytosis. Nat Rev Mol Cell Biol 7: 404–414

    Google Scholar 

  • Katsumoto T, Inoue M, Naguro T, Kurimura T (1991) Association of cytoskeletons with the Golgi apparatus: three-dimensional observation and computer-graphic reconstruction. J Electron Microsc (Tokyo) 40: 24–28

    Google Scholar 

  • Kepes F, Rambourg A, Satiat-Jeunemaitre B (2005) Morphodynamics of the secretory pathway. Int Rev Cytol 242: 55–120

    Google Scholar 

  • Kerkhoff E, Simpson JC, Leberfinger CB, Otto IM, Doerks T, Bork P, Rapp UR, Raabe T, Pepperkok R (2001) The Spir actin organizers are involved in vesicle transport processes. Curr Biol 11: 1963–1968

    Google Scholar 

  • Keryer G, Di Fiore B, Celati C, Lechtreck KF, Mogensen M, Delouvee A, Lavia P, Bornens M, Tassin AM (2003a) Part of Ran is associated with AKAP450 at the centrosome: involvement in microtubule-organizing activity. Mol Biol Cell 14: 4260–4271

    Google Scholar 

  • Keryer G, Witczak O, Delouvee A, Kemmner WA, Rouillard D, Tasken K, Bornens M (2003b) Dissociating the centrosomal matrix protein AKAP450 from centrioles impairs centriole duplication and cell cycle progression. Mol Biol Cell 14:2436–2446

    Google Scholar 

  • Kessels MM, Dong J, Leibig W, Westermann P, Qualmann B (2006) Complexes of syndapin II with dynamin II promote vesicle formation at the trans-Golgi network. J Cell Sci 119: 1504–1516

    Google Scholar 

  • Kessels MM, Qualmann B (2004) The syndapin protein family: linking membrane trafficking with the cytoskeleton. J Cell Sci 117: 3077–3086

    Google Scholar 

  • Kilmartin JV, Adams AE (1984) Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J Cell Biol 98: 922–933

    Google Scholar 

  • Kim HS, Takahashi M, Matsuo K, Ono Y (2007) Recruitment of CG-NAP to the Golgi apparatus through interaction with dynein-dynactin complex. Genes Cells 12:421–434

    Google Scholar 

  • Kim S, Coulombe PA (2007) Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev 21: 1581–1597

    Google Scholar 

  • Kondylis V, Rabouille C (2003) A novel role for dp1 15 in the organization of tER sites in Drosophila. J Cell Biol 162: 185–198

    Google Scholar 

  • Kondylis V, Van Nispen tot Pannerden HE, Herpers B, Friggi-Grelin F, Rabouille C (2007) The Golgi comprises a paired stack that is separated at G2 by modulation of the actin cytoskeleton through Abi and Scar/WAVE. Dev Cell 12: 901–915

    Google Scholar 

  • Kostenko EV, Mahon GM, Cheng L, Whitehead IP (2005) The Sec14 homology domain regulates the cellular distribution and transforming activity of the Rho-specific guanine nucleotide exchange factor Dbs. J Biol Chem 280: 2807–2817

    Google Scholar 

  • Kroschewski R, Hall A, Mellman I (1999) Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat Cell Biol 1:8–13

    Google Scholar 

  • Kumemura H, Harada M, Omary MB, Sakisaka S, Suganuma T, Namba M, Sata M (2004) Aggregation and loss of cytokeratin filament networks inhibit Golgi organization in liver-derived epithelial cell lines. Cell Motil Cytoskeleton 57: 37–52

    Google Scholar 

  • Kupfer A, Louvard D, Singer SJ (1982) Polarization of the Golgi apparatus and the microtubule-organizing center in cultured f ibroblasts at the edge of an experimental wound. Proc Natl Acad Sci USA 79: 2603–2607

    Google Scholar 

  • Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144: 1135–1149

    Google Scholar 

  • Lanzetti L (2007) Actin in membrane trafficking. Curr Opin Cell Biol 19: 453–458

    Google Scholar 

  • Larocca MC, Shanks RA, Tian L, Nelson DL, Stewart DM, Goldenring JR (2004) AKAP350 interaction with cdc42 interacting protein 4 at the Golgi apparatus. Mol Biol Cell 15: 2771–2781

    Google Scholar 

  • Lazaro-Dieguez F, Colonna C, Cortegano M, Calvo M, Martinez SE, Egea G (2007) Variable actin dynamics requirement for the exit of different cargo from the trans-Golgi network. FEBS Lett 581: 3875–3881

    Google Scholar 

  • Lazaro-Dieguez F, Jimenez N, Barth H, KosterAJ, Renau-PiquerasJ, LlopisJL, Burger KN, Egea G (2006) Actin filaments are involved in the maintenance of Golgi cisternae morphology and intra-Golgi pH. Cell Motil Cytoskeleton 63: 778–791

    Google Scholar 

  • Levine T, Rabouille C (2005) Endoplasmic reticulum: one continuous network compartmentalized by extrinsic cues. Curr Opin Cell Biol 17: 362–368

    Google Scholar 

  • Lu Z, Joseph D, Bugnard E, Zaal KJ, Ralston E (2001) Golgi complex reorganization during muscle differentiation: visualization in living cells and mechanism. Mol Biol Cell 12:795–808

    Google Scholar 

  • Luders J, Stearns T (2007) Microtubule-organizing centres: a re-evaluation. Nat Rev Mol Cell Biol 8: 161–167

    Google Scholar 

  • Luna A, Matas OB, Martinez-Menarguez JA, Mato E, DuranJM, Ballesta J, Way M, Egea G (2002) Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol Biol Cell 13: 866–879

    Google Scholar 

  • Malikov V, Cytrynbaum EN, Kashina A, Mogilner A, Rodionov V (2005) Centering of a radial microtubule array by translocation along microtubules spontaneously nucleated in the cytoplasm. Nat Cell Biol 7: 1213–1218

    Google Scholar 

  • Malikov V, Kashina A, Rodionov V (2004) Cytoplasmicdynein nucleates microtubules to organize them into radial arrays in vivo. Mol Biol Cell 15: 2742–2749

    Google Scholar 

  • Mardones GA, Snyder CM, Howell KE (2006) Cis-Golgi matrix proteins move directly to endoplasmicreticulum exit sites by association with tubules. Mol Biol Cell 17:525–538

    Google Scholar 

  • Marsh BJ, Mastronarde DN, Buttle KF, Howell KE, McIntosh JR (2001) Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Natl Acad Sci USA 98: 2399–2406

    Google Scholar 

  • Matanis T, Akhmanova A, Wulf P, DelNery E, Weide T, Stepanova T, Galjart N, Grosveld F, Goud B, De Zeeuw CI, Barnekow A, Hoogenraad CC (2002) Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nat Cell Biol 4: 986–992

    Google Scholar 

  • Matas OB, Martinez-Menarguez JA, Egea G (2004) Associationof Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes. Traffic 5: 838–846

    Google Scholar 

  • Matas OB, Fritz S, Luna A, Egea G (2005) Membrane trafficking at the ER/Golgi interface: functional implications of RhoA and Rac1. Eur J Cell Biol 84: 699–707

    Google Scholar 

  • Merrifield CJ (2004) Seeing is believing: imaging actin dynamics at single sites of endocytosis. Trends Cell Biol 14: 352–358

    Google Scholar 

  • Merrifield CJ, Perrais D, Zenisek D (2005) Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121: 593–606

    Google Scholar 

  • Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15: 467–476

    Google Scholar 

  • Miller DD, Scordilis SP, Hepler PK(1995) Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata. J Cell Sci 108 (Pt 7): 2549–2563

    Google Scholar 

  • Mizuno M, Singer SJ (1994) A possible role for stable microtubules in intracellular transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Sci 107 (Pt 5): 1321–1331

    Google Scholar 

  • Mogelsvang S, Gomez-Ospina N, Soderholm J, Glick BS, Staehelin LA (2003) Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. Mol Biol Cell 14: 2277–2291

    Google Scholar 

  • Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M (2000) Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J Cell Sci 113 (Pt 17): 3013–3023

    Google Scholar 

  • Mollenhauer HH, Morre DJ (1976) Cytochalasin B, but not colchicine, inhibits migration of secretory vesicles in root tips of maize. Protoplasma 87: 39–48

    Google Scholar 

  • Montes de Oca G, Lezama RA, Mondragon R, Castillo AM, Meza I (1997) Myosin I interactions with actin filaments and trans-Golgi-derived vesicles in MDCK cell monolayers. Arch Med Res 28: 321–328

    Google Scholar 

  • Moriyama Y, Nelson N (1989) H+-translocating ATPase in Golgi apparatus. Characterization as vacuolar H+-ATPase and its subunit structures. J Biol Chem 264: 18445–18450

    Google Scholar 

  • Moseley JB, Goode BL (2006) The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 70: 605–645

    Google Scholar 

  • Mulholland J, Wesp A, Riezman H, Botstein D (1997) Yeast actin cytoskeleton mutants accumulatea newclassof Golgi-derived secretaryvesicle. Mol Biol Cell 8:1481–1499

    Google Scholar 

  • Musch A (2004) Microtubule organization and function in epithelial cells. Traffic 5:1–9

    Google Scholar 

  • Musch A, Cohen D, Kreitzer G, Rodriguez-Boulan E (2001) cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J 20:2171–2179

    Google Scholar 

  • Musch A, Cohen D, Rodriguez-Boulan E (1997) Myosin II is involved in the production of constitutive transport vesicles from the TGN. J Cell Biol 138: 291–306

    Google Scholar 

  • Nakamura N, Tanaka S, Teko Y, Mitsui K, Kanazawa H (2005) Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J Biol Chem 280: 1561–1572

    Google Scholar 

  • Nebenfuhr A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin LA (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121: 1127–1142

    Google Scholar 

  • Novick P, Botstein D (1985) Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40: 405–416

    Google Scholar 

  • Omary MB, Coulombe PA, McLean WH (2004) Intermediate filament proteins and their associated diseases. N Engl J Med 351: 2087–2100

    Google Scholar 

  • Oriolo AS, Wald FA, Ramsauer VP, Salas PJ (2007) Intermediate filaments: a role in epithelial polarity. Exp Cell Res 313: 2255–2264

    Google Scholar 

  • Palokangas H, Ying M, Vaananen K, Saraste J (1998) Retrograde transport from the pre-Golgi intermediate compartment and the Golgi complex is affected by the vacuolar H+-ATPase inhibitor bafilomycin A1. Mol Biol Cell 9: 3561–3578

    Google Scholar 

  • Pelletier L, Stern CA, Pypaert M, Sheff D, Ngo HM, Roper N, He CY, Hu K, Toomre D, Coppens I, Roos DS, Joiner KA, Warren G (2002) Golgi biogenesis in Toxoplasma gondii. Nature 418: 548–552

    Google Scholar 

  • Percival JM, Froehner SC (2007) Golgi complex organization in skeletal muscle: a role for Golgi-mediated glycosylation in muscular dystrophies? Traffic 8: 184–194

    Google Scholar 

  • Percival JM, Hughes JA, Brown DL, Schevzov G, Heimann K, Vrhovski B, Bryce N, Stow JL, Gunning PW (2004) Targeting of a tropomyosin isoform to short microfilaments associated with the Golgi complex. Mol Biol Cell 15: 268–280

    Google Scholar 

  • Perrais D, Merrifield CJ (2005) Dynamics of endocytic vesicle creation. Dev Cell 9: 581–592

    Google Scholar 

  • Picton JM, Steer MW (1981) Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D. J Cell Sci 49: 261–272

    Google Scholar 

  • Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5: 133–147

    Google Scholar 

  • Prahlad V, Yoon M, Moir RD, Vale RD, Goldman RD (1998) Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J Cell Biol 143: 159–170

    Google Scholar 

  • Presley JF, Cole NB, Schroer AT, Hirschberg K, Zaal KJ, Lippincott-Schwartz J (1997) ER-to-Golgi transport visualized in living cells. Nature 389: 81–85

    Google Scholar 

  • Preuss D, Mulholland J, Franzusoff A, Segev N, Botstein D (1992) Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol Biol Cell 3: 789–803

    Google Scholar 

  • Prigozhina NL, Waterman-Storer CM (2004) Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility. Curr Biol 14: 88–98

    Google Scholar 

  • Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A (2004) Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 20:559–591

    Google Scholar 

  • Quintyne NJ, Gill SR, Eckley DM, Crego CL, Compton DA, Schroer TA (1999) Dynactin is required for microtubule anchoring at centrosomes. J Cell Biol 147: 321–334

    Google Scholar 

  • Ralston E (1993) Changes in architecture of the Golgi complex and other subcellular organelles during myogenesis. J Cell Biol 120: 399–409

    Google Scholar 

  • Ralston E, Lu Z, Ploug T (1999) The organization of the Golgi complex and microtubules in skeletal muscle is fiber type-dependent. J Neurosci 19: 10694–10705

    Google Scholar 

  • Ralston E, Ploug T, Kalhovde J, Lomo T (2001) Golgi complex, endoplasmicreticulum exit sites, and microtubules in skeletal muscle fibers are organized by patterned activity. J Neurosci 21: 875–883

    Google Scholar 

  • Rambourg A, Clermont Y (1986) Tridimensional structure of the Golgi apparatus in type A ganglion cells of the rat. Am J Anat 176: 393–409

    Google Scholar 

  • Rambourg A, Jackson CL, Clermont Y (2001) Three dimensional configuration of the secretory pathway and segregation of secretion granules in the yeast Saccharomyces cerevisiae. J Cell Sci 114: 2231–2239

    Google Scholar 

  • Rao MV, EngleLJ, Mohan PS, Yuan A, Qiu D, CataldoA, Hassinger L, Jacobsen S, LeeVM, Andreadis A, Julien JP, Bridgman PC, Nixon RA (2002) Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J Cell Biol 159: 279–290

    Google Scholar 

  • Rappleye CA, Paredez AR, Smith CW, McDonald KL, Aroian RV (1999) The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev 13: 2838–2851

    Google Scholar 

  • RehbergM, Kleylein-Sohn J, Faix J, Ho TH, Schulz I, Graf R (2005) Dictyostelium LIS1 is a centrosomal protein required for microtubule/cell cortex interactions, nucleus/centrosome linkage, and actin dynamics. Mol Biol Cell 16: 2759–2771

    Google Scholar 

  • Ridgway ND, Dawson PA, Ho YK, Brown MS, Goldstein JL (1992) Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J Cell Biol 116:307–319

    Google Scholar 

  • Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16: 522–529

    Google Scholar 

  • Rios RM, Bornens M (2003) The Golgi apparatus at the cell centre. Curr Opin Cell Biol 15: 60–66

    Google Scholar 

  • Rios RM, Sanchis A, Tassin AM, Fedriani C, Bornens M (2004) GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118:323–335

    Google Scholar 

  • Robbins E, Gonatas NK (1964) Histochemical and ultrastructural studies on HeLa cell cultures exposed to spindle inhibitors with special reference to the interphase cell. J Histochem Cytochem 12: 704–711

    Google Scholar 

  • Rodriguez ML, Brignoni M, Salas PJ (1994) A specifically apical sub-membrane intermediate filament cytoskeleton in non-brush-border epithelial cells. J Cell Sci 107 (Pt 11): 3145–3151

    Google Scholar 

  • Rodriguez-Boulan E, Kreitzer G, Musch A (2005) Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 6: 233–247

    Google Scholar 

  • Rogalski AA, Bergmann JE, Singer SJ (1984) Effect of microtubule assembly status on the intracellular processing and surface expression of an integral protein of the plasma membrane. J Cell Biol 99: 1101–1109

    Google Scholar 

  • Rohatgi R, Ho HY, Kirschner MW (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J Cell Biol 150: 1299–1310

    Google Scholar 

  • Ross JL, Wallace K, Shuman H, Goldman YE, Holzbaur EL (2006) Processive bidirectional motion of dynein-dynactin complexes in vitro. Nat Cell Biol 8: 562–570

    Google Scholar 

  • Rossanese OW, Reinke CA, Bevis BJ, Hammond AT, Sears IB, O’Connor J, Glick BS (2001) A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J Cell Biol 153:47–62

    Google Scholar 

  • Rossanese OW, Soderholm J, Bevis BJ, Sears IB, O’Connor J, Williamson EK, Glick BS (1999) Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J Cell Biol 145: 69–81

    Google Scholar 

  • Rosso S, Bollati F, Bisbal M, PerettiD, Sumi T, Nakamura T, Quiroga S, Ferreira A, Caceres A (2004) LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons. Mol Biol Cell 15: 3433–3449

    Google Scholar 

  • Roux A, Cappello G, Cartaud J, Prost J, Goud B, Bassereau P (2002) A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc Natl Acad Sci USA 99: 5394–5399

    Google Scholar 

  • Rozelle AL, Machesky LM, Yamamoto M, Driessens MH, Insall RH, Roth MG, Luby-Phelps K, Marriott G, Hall A, Yin HL (2000) Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesiclesthroughWASP-Arp2/3. Curr Biol 10: 311–320

    Google Scholar 

  • Rybakin V, Clemen CS (2005) Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. Bioessays 27: 625–632

    Google Scholar 

  • Rybakin V, Stumpf M, Schulze A, Majoul IV, Noegel AA, Hasse A (2004) Coronin 7, the mammalian POD-1 homologue, localizes to the Golgi apparatus. FEBS Lett 573: 161–167

    Google Scholar 

  • Sahlender DA, Roberts RC, Arden SD, Spudich G, Taylor MJ, Luzio JP, Kendrick-Jones J, Buss F (2005) Optineurinl inks myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol 169: 285–295

    Google Scholar 

  • Saint-Jore CM, Evins J, Batoko H, Brandizzi F, Moore I, Hawes C (2002) Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J 29:661–678

    Google Scholar 

  • Salas PJ, Rodriguez ML, Viciana AL, Vega-Salas DE, Hauri HP (1997) The apical sub-membrane cytoskeleton participates in the organization of the apical pole in epithelial cells. J Cell Biol 137: 359–375

    Google Scholar 

  • Samaj J, Muller J, Beck M, Bohm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11: 594–600

    Google Scholar 

  • Sandoval IV, Bonifacino JS, Klausner RD, Henkart M, Wehland J (1984) Role of microtubules in the organization and localization of the Golgi apparatus. J Cell Biol 99: 113S–118S

    Google Scholar 

  • Saraste J, Goud B (2007) Functional symmetry of endomembranes. Mol Biol Cell 18: 1430–1436

    Google Scholar 

  • Satiat-Jeunemaitre B, Cole L, Bourett T, Howard R, Hawes C (1996) Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking? J Microsc 181: 162–177

    Google Scholar 

  • Scales SJ, Pepperkok R, Kreis TE (1997) Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90: 1137–1148

    Google Scholar 

  • Sciaky N, Presley J, Smith C, Zaal KJ, Cole N, Moreira JE, Terasaki M, Siggia E, Lippincott-Schwartz J (1997) Golgi tubule traffic and the effects of brefeldin A visualized inliving cells. J Cell Biol 139: 1137–1155

    Google Scholar 

  • Schafer DA, Weed SA, Binns D, KarginovAV, Parsons JT, Cooper JA (2002) Dynamin2and cortactin regulate actin assembly and filament organization. Curr Biol 12: 1852–1857

    Google Scholar 

  • Schroer TA (2004) Dynactin. Annu Rev Cell Dev Biol 20: 759–779

    Google Scholar 

  • Schulze E, Asai DJ, Bulinski JC, Kirschner M (1987) Posttranslational modification and microtubule stability. J Cell Biol 105: 2167–2177

    Google Scholar 

  • Segui-Simarro JM, Austin JR II, White EA, Staehelin LA (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16: 836–856

    Google Scholar 

  • Shimmen T, Yokota E (2004) Cytoplasmic streaming in plants. Curr Opin Cell Biol 16: 68–72

    Google Scholar 

  • Skoufias DA, Burgess TL, Wilson L (1990) Spatial and temporal colocalization of the Golgi apparatus and microtubules rich in detyrosinated tubulin. J Cell Biol 111: 1929–1937

    Google Scholar 

  • Smythe E, Ayscough KR (2006) Actin regulation in endocytosis. J Cell Sci 119:4589–4598

    Google Scholar 

  • Soldati T, Schliwa M (2006) Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol 7: 897–908

    Google Scholar 

  • Spelbrink RG, Nothwehr SF (1999) The yeast GRD20 gene is required for protein sorting in the trans-Golgi network/endosomal system and for polarization of the actin cytoskeleton. Mol Biol Cell 10: 4263–4281

    Google Scholar 

  • Stamnes M (2002) Regulating the actin cytoskeleton during vesicular transport. Curr Opin Cell Biol 14: 428–433

    Google Scholar 

  • Stankewich MC, Tse WT, Peters LL, Ch’ng Y, John KM, Stabach PR, Devarajan P, Morrow JS, Lux SE (1998) A widely expressed beta I I I spectrin associated with Golgi and cytoplasmic vesicles. Proc Natl Acad Sci USA 95: 14158–14163

    Google Scholar 

  • Stauber T, Simpson JC, Pepperkok R, Vernos I (2006) A role for kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex. Curr Biol 16:2245–2251

    Google Scholar 

  • Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM (2006) Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443: 462–465

    Google Scholar 

  • Stow JL, Fath KR, Burgess DR (1998) Budding roles for myosin II on the Golgi. Trends Cell Biol 8: 138–141

    Google Scholar 

  • Styers ML, Kowalczyk AP, Faundez V (2005) Intermediate filaments and vesicular membrane traffic: the odd couple’s first dance? Traffic 6: 359–365

    Google Scholar 

  • Styers ML, Salazar G, Love R, Peden AA, Kowalczyk AP, Faundez V (2004) The endo-lysosomal sorting machinery interacts with the intermediate filament cytoskeleton. Mol Biol Cell 15: 5369–5382

    Google Scholar 

  • Takahashi M, Shibata H, Shimakawa M, Miyamoto M, Mukai H, Ono Y (1999) Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the Golgi apparatus. J Biol Chem 274: 17267–17274

    Google Scholar 

  • Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y (2002) Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. Mol Biol Cell 13: 3235–3245

    Google Scholar 

  • Tassin AM, Maro B, Bornens M (1985a) Fate of microtubule-organizing centers durin myogenesis in vitro. J Cell Biol 100: 35–46

    Google Scholar 

  • Tassin AM, Paintrand M, Berger EG, Bornens M (1985b) The Golgi apparatus remains associated with microtubule organizing centers during myogenesis. J Cell Biol 101: 630–638

    Google Scholar 

  • Thyberg J, Moskalewski S (1985) Microtubules and the organization of the Golgi complex. Exp Cell Res 159: 1–16

    Google Scholar 

  • Thyberg J, Moskalewski S (1993) Relationship between the Golgi complex and microtubules enriched in detyrosinated or acetylated alpha-tubulin: studies on cells recovering from nocodazole and cells in the terminal phase of cytokinesis. Cell Tissue Res 273: 457–466

    Google Scholar 

  • Thyberg J, Moskalewski S (1999) Role of microtubules in the organization of the Golgi complex. Exp Cell Res 246: 263–279

    Google Scholar 

  • Toivola DM, Tao GZ, Habtezion A, Liao J, Omary MB (2005) Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol 15: 608–617

    Google Scholar 

  • Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M, Buccione R, Geerts WJ, Koster AJ, Burger KN, Mironov AA, Luini A (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6: 1071–1081

    Google Scholar 

  • Tyska MJ, Mackey AT, Huang JD, Copeland NG, Jenkins NA, Mooseker MS (2005) Myosin-1a is critical for normal brush border structure and composition. Mol Biol Cell 16: 2443–2457

    Google Scholar 

  • Uemura T, Yoshimura SH, Takeyasu K, Sato MH (2002) Vacuolar membrane dynamics revealed by GFP-AtVam3 fusion protein. Genes Cells 7: 743–753

    Google Scholar 

  • Uitto J, Richard G, McGrath JA (2007) Diseases of epidermal keratins and their linker proteins. Exp Cell Res 313: 1995–2009

    Google Scholar 

  • Valderrama F, Babia T, Ayala I, Kok JW, Renau-Piqueras J, Egea G (1998) Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur J Cell Biol 76: 9–17

    Google Scholar 

  • Valderrama F, Duran JM, Babia T, Barth H, Renau-Piqueras J, Egea G (2001) Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells. Traffic 2: 717–726

    Google Scholar 

  • Valderrama F, Luna A Babia T, Martinez-Menarguez JA, Ballesta J, Barth H, Chaponnier C, Renau-Piqueras J, Egea G (2000) The Golgi-associated COPI-coated buds and vesicles contain beta/gamma-actin. Proc Natl Acad Sci USA 97: 1560–1565

    Google Scholar 

  • Vallee RB, Varma D, Dujardin DL (2006) ZW10 function in mitotic checkpoint control, dynein targeting and membrane trafficking: is dynein the unifying theme? Cell Cycle 5: 2447–2451

    Google Scholar 

  • Varma D, Dujardin DL, Stehman SA, Vallee RB (2006) Role of the kinetochore/cell cycle checkpoint protein ZW10 in interphase cytoplasmic dynein function. J Cell Biol 172: 655–662

    Google Scholar 

  • Vidali L, McKenna ST, Hepler PK (2001) Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12: 2534–2545

    Google Scholar 

  • Wang C, JeBailey L, Ridgway ND (2002) Oxysterol-binding-protein (OSBP)-related protein 4 binds 25-hydroxycholesterol and interacts with vimentin intermediate filaments. Biochem J 361: 461–472

    Google Scholar 

  • Warner CL, Stewart A Luzio JP, Steel KP, Libby RT, Kendrick-Jones J, Buss F (2003) Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell’s waltzer mice. EMBO J 22: 569–579

    Google Scholar 

  • Watson P, Forster R, Palmer KJ, Pepperkok R, Stephens DJ (2005) Coupling of ER exit to microtubules through direct interaction of COPII with dynactin. Nat Cell Biol 7: 48–55

    Google Scholar 

  • Wehland J, Henkart M, Klausner R, Sandoval IV (1983) Role of microtubules in the distribution of the Golgi apparatus: effect of taxol and microinjected anti-alpha-tubulin antibodies. Proc Natl Acad Sci USA 80: 4286–4290

    Google Scholar 

  • Weiner OH, Murphy J, Griffiths G, Schleicher M, Noegel AA (1993) The actin-binding protein comitin (p24) is a component of the Golgi apparatus. J Cell Biol 123:23–34

    Google Scholar 

  • Welch MD, Mullins RD (2002) Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18:247–288

    Google Scholar 

  • Welte MA (2004) Bidirectional transport along microtubules. Curr Biol 14: R525–R537

    Google Scholar 

  • Yan X, Habedanck R, Nigg EA (2006) A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol Biol Cell 17: 634–644

    Google Scholar 

  • Yang YD, Elamawi R, Bubeck J, Pepperkok R, Ritzenthaler C, Robinson DG (2005) Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with endoplasmicr eticulum exit sites. Plant Cell 17: 1513–1531

    Google Scholar 

  • Young J, Stauber T, del Nery E, Vernos I, Pepperkok R, Nilsson T (2005) Regulation of microtubule-dependent recycling at the trans-Golg i network by Rab6A and Rab6A. Mol Biol Cell 16: 162–177

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Egea, G., Ríos, R.M. (2008). The role of the cytoskeleton in the structure and function of the Golgi apparatus. In: Mironov, A.A., Pavelka, M. (eds) The Golgi Apparatus. Springer, Vienna. https://doi.org/10.1007/978-3-211-76310-0_17

Download citation

Publish with us

Policies and ethics