Skip to main content

The role of Ca2 in the regulation of intracellular transport

  • Chapter
The Golgi Apparatus

Abstract

It is known thatcytosolicCa2+isessentialforsignalling, cell-cycle function, cell growth, cell death and other functions (Gill et al. 1996; Orrenius etal. 2003). Recent evidence has also highlighted the functional importance of Ca2+ for intracellular trafficking, and in particular for the fusion of endomembranes, with further functions inside the lumen of Golgi cisternae and other endomembranes. In this chapter we will discuss these latter roles of Ca2+ mechanisms in the regulation of intracellular trafficking (see also Chapter 2.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler EM, Augustine GJ, Duffy SN, Charlton MP (1991) Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J Neurosci 11(6): 1496–1507

    PubMed  CAS  Google Scholar 

  • Ahluwalia JP, Topp JD, Weirather K, Zimmerman M, Stamnes M (2001) A role for calcium in stabilizing transport vesicle coats. J Biol Chem 276(36): 34148–34155

    Article  PubMed  CAS  Google Scholar 

  • Aridor M, Bannykh SI, Rowe T, Balch WE (1995) Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J Cell Biol 131(4): 875–893

    Article  PubMed  CAS  Google Scholar 

  • Austin CD, Shields D (1996) Prosomatostatin processing in permeabilized cells. Calcium is required for prohormone cleavage but not formation of nascent secretory vesicles. J Biol Chem 271(2): 1194–1199

    Article  PubMed  CAS  Google Scholar 

  • Baker D, Wuestehube L, Schekman R, Botstein D, Segev N (1990) GTP-binding Ypt1 protein and Ca2+ function indipendently in a cell-free protein transport reaction. Proc Natl Acad Sci 87(1): 355–359

    Article  PubMed  CAS  Google Scholar 

  • Beckers CJ, Balch WE (1989) Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparaturs. J Cell Biol 108(4): 1245–1256

    Article  PubMed  CAS  Google Scholar 

  • Behne MJ, Tu CL, Aronchik I, Epstein E, Bench G, Bikle DD, Pozzan T, Mauro TM (2003) Human keratinocyte ATP2C1 localizes to the Golgi and controls Golgi Ca2+ stores. J Invest Dermatol 121(4): 688–694

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Scheller RH, Tsien RW (1995) Functional impact of syntaxin on gating N-type and Q-type calcium channels. Nature 378(6557): 623–626

    Article  PubMed  CAS  Google Scholar 

  • Brostrom CO, Brostrom MA (1990) Calcium-dependent regulation of protein synthesis in intact mammalian cells. Annu Rev Physiol 52: 577–590

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD, Morgan A (1995) Ca2+ and secretory-vesicle dynamics. Trends Neurosci 18(4): 191–196

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD, Morgan A (1998) Calcium sensors in regulated exocytosis. Cell Calcium 24(5–6): 367–376

    Article  PubMed  CAS  Google Scholar 

  • Callewaert G, Parys JB, De Smedt H, Raeymaekers L, Wuytack F, Vanoevelen J, Van Baelen K, Simoni A, Rizzuto R, Missiaen L (2003) Similar Ca2+-signaling properties in keratinocytesand in COS-1 cel ls overexpressing the secretory-pathway Ca2+-ATPase SPCA1. Cell Calcium 34(2): 157–162

    Article  PubMed  CAS  Google Scholar 

  • Carnell L, Moore HP (1994) Transport via the regulated secretory pathway in semi-intact PC12 cells: role of intra-cisternal calcium and pH in the transport and sorting of secretogranin II. J Cell Biol 127(3): 693–705

    Article  PubMed  CAS  Google Scholar 

  • Chanat E, Huttner WB (1991) Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol 115(6): 1505–1519

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Kable EP, Morrison GH, Webb WW (1991) Calcium sequestration in the Golgi apparatus of cultured mammalian cells revealed by laser scanning confocal microscopy and ion microscopy. J Cell Sci 100(4): 747–752

    PubMed  Google Scholar 

  • Chandra S, Fewtrell C, Millard PJ, Sandison DR, Webb WW, Morrison GH (1994) Imaging of total intracellular calcium and calcium influx and efflux in individual resting and stimulated tumor mast cells using ion microscopy. J Biol Chem 269(21): 15186–15194

    PubMed  CAS  Google Scholar 

  • Chen JL, Ahluwalia JP, Stamnes M (2002) Selective effects of calcium chelators on anterograde and retrograde protein transport in the cell. J Biol Chem 277(38): 35682–35687

    Article  PubMed  CAS  Google Scholar 

  • Chen YA, Scales SJ, Patel SM, Doung YC, Scheller RH (1999) SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97(2): 165–174

    Article  PubMed  CAS  Google Scholar 

  • Cho SJ, Kelly M, Rognlien KT, Cho JA, Horber JK, Jena BP(2002)SNAREs in opposing bilayers interact in a circular array to form conducting pores. Biophys J 83(5): 2522–2527

    Article  PubMed  CAS  Google Scholar 

  • Christensen KA, Myers JT, Swanson JA (2002) pH-dependent regulation of lysosomal calcium in macrophages. J Cell Sci 115(3): 599–607

    PubMed  CAS  Google Scholar 

  • Colombo MI, Beron W, Stahl PD (1997) Calmodulin regulates endosome fusion. J Biol Chem 272(12): 7707–7712

    Article  PubMed  CAS  Google Scholar 

  • Coorssen JR, Blank PS, Tahara M, Zimmerberg J (1998) Biochemical and functional studies of cortical vesicle fusion: the SNARE complex and Ca2+sensitivity. J Cell Biol 143(7): 1845–1857

    Article  PubMed  CAS  Google Scholar 

  • Corbett EF, Michalak M (2000) Calcium, a signalling molecule in the endoplasmic reticulum? Trends Biochem Sci 25(7): 307–311

    Article  PubMed  CAS  Google Scholar 

  • Davidson HW, Rhodes CJ, Hutton JC (1988) Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endo-peptidases. Nature 333(6168): 93–96

    Article  PubMed  CAS  Google Scholar 

  • Dolman NJ, Gerasimenko JV, Gerasimenko OV, Voronina SG, Petersen OH, Tepikin AV (2005) Stable Golgi-mitochondria complexesand formation of Golgi Ca2+ gradients in pancreatic acinar cells. J Biol Chem 280(16): 15794–15799

    Article  PubMed  CAS  Google Scholar 

  • Dolman NJ, Tepikin AV (2006) Calcium gradients and the Golgi. Cell Calcium 40(5–6): 505–512

    Article  PubMed  CAS  Google Scholar 

  • Duncan JS, Burgoyne RD (1996) Characterization of the effects of Ca2+ depletion on the synthesis, phosphorylation and secretion of caseins in lactating mammary epithelial cells. Biochem J 317(2): 487–493

    PubMed  CAS  Google Scholar 

  • Durr G, Strayle J, Plemper R, Elbs S, Klee SK, Catty P, Wolf DH, Rudolph HK (1998) The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol Biol Cell 9(5): 1149–1162

    PubMed  CAS  Google Scholar 

  • Falke JJ, Drake SK, Hazard AL, Peersen OB (1994) Molecular tuning of ion binding to calcium signaling proteins. Q Rev Biophys 27(3): 219–290

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JJ, Barlowe C (2006) Cysteine-disulfide cross-linking to monitor SNARE complex assembly during endoplasmic reticulum-Golgi transport. J Biol Chem 281(4): 2281–2288

    Article  PubMed  CAS  Google Scholar 

  • Foggia L, Aronchik I, Aberg K, Brown B, Hovnanian A, Mauro TM (2005) Activity of the hSPCA1 Golgi Ca2+ pump is essential for Ca2+-mediated Ca2+ response and cell viability in Darier disease. J Cell Sci 119(4): 671–679

    Article  CAS  Google Scholar 

  • Gerasimenko JV, Tepikin AV, Petersen OH, Gerasimenko OV (1998) Calcium uptake via endocytosis with rapid release from acidifying endosomes. Curr Biol 8(24): 1335–1338

    Article  PubMed  CAS  Google Scholar 

  • Gerasimenko OV, Gerasimenko JV, Petersen OH, Tepikin AV (1996) Short pulses of acetylcholine stimulation induce cytosolic Ca2+ signals that are excluded from the nuclear region in pancreatic acinar cells. Pflugers Arch 432(6): 1055–1061

    Article  PubMed  CAS  Google Scholar 

  • Gerasimenko OV, Gerasimenko JV, Rizzuto RR, Treiman M, Tepikin AV, Petersen OH (2002) The distribution of the endoplasmic reticulum in living pancreatic acinar cells. Cell Calcium 32(5–6): 261–268

    Article  PubMed  CAS  Google Scholar 

  • Ghosh M, Tucker DE, Burchett SA, Leslie CC (2006) Properties of the Group IV phospho-lipase A2 family. Prog Lipid Res 45(6): 487–510

    Article  PubMed  CAS  Google Scholar 

  • Gill DL, Waldron RT, Rys-Sikora KE, Ufret-Vincenty CA, Graber MN, Favre CJ, Alfonso A (1996) Calcium pools, calcium entry, and cell growth. Biosci Rep 16(2): 139-157 Honoré B, Vorum H (2000) The CREC family, a novel family of multiple EF-hand, low-affinity Ca2+-binding proteins localised to the secretory pathway of mammalian cells. FEBS Lett 466(1): 11–18

    Google Scholar 

  • Ivessa NE, De Lemos-Chiarandini C, Gravotta D, Sabatini DD, Kreibich G (1995) The brefeldin A-induced retrograde transport from the Golgi apparatus to the endo-plasmic reticulum depends on calcium sequestered to intracellular stores. J Biol Chem 270(43): 25960–25967

    Article  PubMed  CAS  Google Scholar 

  • Jeremic A, Kelly M, Cho JA, Cho SJ, Horber JK, Jena BP (2004) Calcium drives fusion of SNARE-apposed bilayers. Cell Biol Int 28(1): 19–31

    Article  PubMed  CAS  Google Scholar 

  • Kawano J, Kotani T, Ogata Y, Ohtaki S, Takechi S, Nakayama T, Sawaguchi A, Nagaike R, Oinuma T, Suganuma T (2000) CALNUC (nucleobindin) is localized in the Golgi apparatus in insect cells. Eur J Cell Biol 79(3): 208–217

    Article  PubMed  CAS  Google Scholar 

  • Kweon HS, Beznoussenko GV, Micaroni M, Polishchuk RS, Trucco A, Martella O, Di Giandomenico D, Marra P, Fusella A, Di Pentima A, Berger EG, Geerts WJ, Koster AJ, Burger KN, Luini A, Mironov AA (2004) Golgi enzymes are enriched in perforated zones of Golgi cisternae but are depleted in COPI vesicles. Mol Biol Cell 15(10): 4710–4724

    Article  PubMed  CAS  Google Scholar 

  • LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3(11): 862–872

    Article  PubMed  CAS  Google Scholar 

  • Lauvrak SU, Llorente A, Iversen TG, Sandvig K (2002) Selective regulation of the Rab9-independent transport of ricin to the Golgi apparatus by calcium. J Cell Sci 115(17): 3449–3456

    PubMed  CAS  Google Scholar 

  • Lin P, Le-Niculescu H, Hofmeister R, McCaffery JM, Jin M, Hennemann H, McQuistan T, De Vries L, Farquhar MG (1998) The mammalian calcium-binding protein, nucleobindin (CALNUC), is a Golgi resident protein. J Cell Biol 141(7): 1515–1527

    Article  PubMed  CAS  Google Scholar 

  • Lin P, Yao Y, Hofmeister R, Tsien RY, Farquhar MG (1999) Overexpression of CALNUC (nucleobindin) increases agonist and thapsigargin releasable Ca2+ storage in the Golgi. J Cell Biol 145(2): 279–289

    Article  PubMed  CAS  Google Scholar 

  • Lodish HF, Kong N, Wikstrom L (1992) Calcium is required for folding of newly made subunits of the asialoglycoprotein receptor within the endoplasmic reticulum. J Biol Chem 267(18): 12753–12760

    PubMed  CAS  Google Scholar 

  • Maki M, Kitaura Y, Satoh H, Ohkouchi S, Shibata H (2002) Structures, functions and molecular evolution of the penta-EF-hand Ca2+-binding proteins. Biochim Biophys Acta 1600(1–2): 51–60

    PubMed  CAS  Google Scholar 

  • Meldolesi J, Pozzan T (1998) The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 23(1): 10–14

    Article  PubMed  CAS  Google Scholar 

  • Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M (1999) Calreticulin: one protein, one gene, many functions. Biochem J 344(2): 281–292

    Article  PubMed  CAS  Google Scholar 

  • Michelangeli F, Ogunbayo OA, Wootton LL (2005) A plethora of interacting organellar Ca2+ stores. Curr Opin Cell Biol 17(2): 135–140

    Article  PubMed  CAS  Google Scholar 

  • Mironov AA, Beznoussenko GV, Polishchuk RS, Trucco A (2005) I.ntra-Golgi transport. A way to a new paradigm? BBA Mol Cell Res 1744(3): 340–350

    CAS  Google Scholar 

  • Missiaen L, Raeymaekers L, Dode L, Vanoevelen J, VanBaelen K, Parys JB, Callewaert G, DeSmedt H, Segaert S, Wuytack F (2004a) SPCA1 pumps and Hailey-Hailey disease. Biochem Biophys Res Commun 322(4): 1204–1213

    Article  PubMed  CAS  Google Scholar 

  • Missiaen L, Van Acker K, Van Baelen K, Raeymaekers L, Wuytack F, Parys JB, De Smedt H, Vanoevelen J, Dode L, Rizzuto R, Callewaert G (2004b) Calcium release from the Golgi apparatus and the endoplasmic reticulum in HeLa cells stably expressing targeted aequorin to these compartments. Cell Calcium 36(6): 479–487

    Article  PubMed  CAS  Google Scholar 

  • Mochida S, Sheng ZH, Baker C, Kobayashi H, Catterall WA (1996) Inhibition of neurotransmission by peptides containing the synaptic protein interaction site N-type Ca2+ channels. Neuron 17(4): 781–788

    Article  PubMed  CAS  Google Scholar 

  • Morel-HuauxVM, Pypaert M, Wouters S, Tartakoff AM, Jurgan U, Gevaert K, Courtoy PJ(2002) The calcium-binding protein p54/NEFA is a novel luminal resident of medial Golgi cisternae that traffics independently of mannosidase II. Eur J Cell Biol 81(2): 87–100

    Article  Google Scholar 

  • Naraghi M (1997) T-jump study of calcium binding kinetics of calcium chelators. Cell Calcium 22(4): 255–268

    Article  PubMed  CAS  Google Scholar 

  • Ohsako S, Hayashi Y, Bunick D (1994) Molecular cloning and sequencing of calnexin-t. An abundant male germ cell-specific calcium-binding protein of the endoplasmic reticulum. J Biol Chem 269(19): 14140–14148

    PubMed  CAS  Google Scholar 

  • Ordenes VR, Reyes FC, Wolff D, Orellana A (2002) Athapsigargin-sensitive Ca2+ pump is present in the pea Golgi apparatus membrane. Plant Physiol 129(4): 1820–1828

    Article  PubMed  CAS  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7): 552–565

    Article  PubMed  CAS  Google Scholar 

  • Parodi AJ (1979) Biosynthesis of yeast mannoproteins. Synthesis of mannan outer chain and of dolichol derivatives. J Biol Chem 254(17): 8343–8352

    PubMed  CAS  Google Scholar 

  • Peters C, Mayer A (1998) Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396(6711): 575–580

    Article  PubMed  CAS  Google Scholar 

  • Pezzati R, Bossi M, Podini P, Meldolesi J, Grohovaz F (1997) High-resolution calcium mapping of the endoplasmic reticulum-Golgi-exocytic membrane system. Electron energy loss imaging analysis of quick frozen-freeze dried PC12 cells. Mol Biol Cell 8(8): 1501–1512

    PubMed  CAS  Google Scholar 

  • Pind SN, Nuoffer C, McCaffery JM, Plutner H, Davidson HW, Farquhar MG, Balch WE (1994) Rab1 and Ca2+ are required for the fusion of carrier vesicles mediating endoplasmic reticulum to Golgi transport. J Cell Biol 125(2): 239–252

    Article  PubMed  CAS  Google Scholar 

  • Pinton P, Pozzan T, Rizzuto R (1998) The Golgi apparatus is an inositol 1,4,5-trisphos-phate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 17(18): 5298–5308

    Article  PubMed  CAS  Google Scholar 

  • Porat A, Elazar Z (2000) Regulation of intra-Golgi membrane transport by calcium. J Biol Chem 275(38): 29233–29237

    Article  PubMed  CAS  Google Scholar 

  • Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74(3): 595–636

    PubMed  CAS  Google Scholar 

  • Pryor PR, Mullock BM, Bright NA, Gray SR, Luzio JP (2000) The role of intraorganellar Ca2+ in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol 149(5): 1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106(2): 157–169

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt TA, Filoteo AG, Penniston JT, Horst RL (2000) Ca2+-ATPase protein expression in mammary tissue. Am J Physiol Cell Physiol 279(5): C1595–C1602

    PubMed  CAS  Google Scholar 

  • Reinhardt TA, Horst RL, Waters WR (2004) Characterization of Cos-7 cells overexpressing the rat secretory pathway Ca2+-ATPase. Am J Physiol Cell Physiol 286(1): C164–C169

    Article  PubMed  CAS  Google Scholar 

  • Rettig J, Heinemann C, Ashery U, Sheng ZH, Yokoyama CT, Catterall WA, Neher E (1997) Alteration of Ca2+ dependance of neurotransmitter release by disruption of Ca2+ channel/syntaxin interaction. J Neurosci 17(17): 6647–6656

    PubMed  CAS  Google Scholar 

  • Rettig J, Neher E (2002) Emerging roles of presynaptic proteins in Ca2+-triggered exocytosis. Science 298(5594): 781–785

    Article  PubMed  CAS  Google Scholar 

  • Roderick HL, Berridge MJ, Bootman MD (2003) Calcium-induced calcium release. Curr Biol 13(11): R425

    Article  PubMed  CAS  Google Scholar 

  • Rojas P, Surroca A, Orellana A, Wolff D (2000) Kinetic characterization of calcium uptake by the rat liver Golgi apparatus. Cell Biol Int 24(4): 229–233

    Article  PubMed  CAS  Google Scholar 

  • Scheckman R (1998) Membrane fusion. Ready …aim …fire!. Nature 396(6711): 514–515

    Article  CAS  Google Scholar 

  • Scherer PE, Lederkremer GZ, Williams S, Fogliano M, Baldini G, Lodish HF (1996) Cab45, a novel (Ca2+)-binding protein localized to the Golgi lumen. J Cell Biol 133(2): 257–268

    Article  PubMed  CAS  Google Scholar 

  • Schmidt WK, Moore HP (1995) Ionic milieu controls the compartment-specific activation of pro-opiomelanocortin processing in AtT-20 cells. Mol Biol Cell 6(10): 1271–1285

    PubMed  CAS  Google Scholar 

  • Sharma CB, Babczinski P, Lehle L, Tanner W (1974) The role of dolicholmonophosphate in glycoprotein biosynthesis in Saccharomyces cerevisiae. Eur J Biochem 46(1): 35–41

    Article  PubMed  CAS  Google Scholar 

  • Sheng ZH, Rettig J, Takahashi M, Catterall WA (1994) Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13(6): 1303–1313

    Article  PubMed  CAS  Google Scholar 

  • Sheng ZH, Rettig J, Cook T, Catterall WA (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379(6564): 451–454

    Article  PubMed  CAS  Google Scholar 

  • Shibata H, Suzuki H, Yoshida H, Maki M (2007) ALG-2 directly binds Sec31Aand localizes at endoplasmic reticulum exit sites in a Ca2+-dependent manner. Biochem Biophys Res Commun 353(3): 756–763

    Article  PubMed  CAS  Google Scholar 

  • Sorin A, Rosas G, Rao R (1997) PMR1, a Ca2+-ATPase in yeast Golgi, has properties distinct from sarco/endoplasmic reticulum and plasma membrane calcium pumps. J Biol Chem 272(15): 9895–9901

    Article  PubMed  CAS  Google Scholar 

  • Sorrentino V, Rizzuto R (2001) Molecular genetics of Ca2+ stores and intracellular Ca2+ signaling. Trends Pharm Sci 22(9): 459–464

    Article  PubMed  CAS  Google Scholar 

  • Steiner DF (1998) The proprotein convertases. Curr Opin Chem Biol 2(1): 31–39

    Article  PubMed  CAS  Google Scholar 

  • Stojilkovic SS (2005) Ca2+-regulated exocytosis and SNARE function. Trends Endocrinol Metab 16(3): 81–83

    Article  PubMed  CAS  Google Scholar 

  • Sullivan KM, Busa WB, Wilson KL (1993) Calcium mobilization is required for nuclear vesicle fusion in vitro: implications for membrane traffic and IP3 receptor function. Cell 73(7): 1411–1422

    Article  PubMed  CAS  Google Scholar 

  • Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Physiol Plant Mol Biol 51:433–462

    Article  PubMed  CAS  Google Scholar 

  • Taylor RS, Jones SM, Dahl RH, Nordeen MH, Howell KE (1997) Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol Biol Cell 8(10): 1911–1931

    PubMed  CAS  Google Scholar 

  • Van Baelen K, Vanoevelen J, Missiaen L, Raeymaekers L, Wuytack F (2001) The Golgi PMR1 P-type ATPase of Caenorhabditis elegans. Identification of the gene and demonstration of calcium and manganese transport. J Biol Chem 276(14): 10683–10691

    Article  PubMed  Google Scholar 

  • Van Baelen K, Vanoevelen J, Callewaert G, Parys JB, DeSmedt H, Raeymaekers L, Rizzuto R, Missiaen L, Wuytack F (2003) The contribution of the SPCA1 Ca2+ pump to the Ca2+ accumulation in the Golgi apparatus of HeLa cells assessed via RNA-mediated interference. Biochem Biophys Res Commun 306(2): 430–436

    Article  PubMed  CAS  Google Scholar 

  • Van Baelen K, Dode L, Vanoevelen J, Callewaert G, De Smedt H, Missiaen L, Parys JB, Raeymaekers L, Wuytack F (2004) The Ca2+/Mn2+ pumps in the Golgi apparatus. Biochim Biophys Acta 1742(1–3): 103–112

    PubMed  Google Scholar 

  • Vanoevelen J, Raeymaeker L, Parys JB, DeSmedt H, Van Baelen K, Callewaert G, Wuytack F, Missiaen L (2004) Inositol-trisphosphate producing agonists do not mobilize the thapsigargin-insensitive part of the endoplasmic reticulum and Golgi Ca2+ store. Cell Calcium 35(2): 115–121

    Article  PubMed  CAS  Google Scholar 

  • Vanoevelen J, Dode L, Van Baelen K, Fairclough RJ, Missiaen L, Raeymaekers L, Wuytack F (2005) The secretory pathway Ca2+/Mn2+-ATPase 2 is a Golgi localized pump with high affinity for Ca2+ ions. J Biol Chem 280(24): 22800–22808

    Article  PubMed  CAS  Google Scholar 

  • Vorum H, Hager H, Christensen BM, Nielsen S, Honoré B (1999) Human calumenin localizes to the secretory pathway and is secreted to the medium. Exp Cell Res 248(2): 473–481

    Article  PubMed  CAS  Google Scholar 

  • Waldron RT, Short AD, Gill DL (1995) Thapsigargin-resistant intracellular calcium pumps. Role in calcium pool function and growth of thapsigargin-resistant cells. J Biol Chem 272(20): 11955–11961

    Google Scholar 

  • Wiser O, Bennett MK, Atlas D (1996) Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L-and N-type Ca2+ channels. EMBO J 15(16): 4100–4110

    PubMed  CAS  Google Scholar 

  • Wuytack F, Raeymaekers L, Missiaen L (2003) PMR1/SPCA Ca2+ pumps and the role of the Golgi apparatus as a calcium store. Pflugers’ Arch 446(2): 148–153

    CAS  Google Scholar 

  • Xiang M, Mohamalawari D, Rao R (2005) A novel isoform of the secretory pathway Ca2+/Mn2+ ATPase, hSPCA2, has unusual properties and is expressed in the brain. J Biol Chem 280(12): 11608–11614

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki A, Tani K, Yamamoto A, Kitamura N, Komada M (2006) The Ca2+-binding protein ALG-2 is recruited to endoplasmic reticulum exit sites by Sec31A and stabilizes the localization of Sec31A. Mol Biol Cell 17(11): 4876–4887

    Article  PubMed  CAS  Google Scholar 

  • Yoshida A, Oho C, Omori A, Ruwahara R, Ito T, Takahashi M (1992) HPC-1 is associated with synaptotagmin and omega-conotoxin receptor. J Biol Chem 267(35): 24925–24928

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Micaroni, M., Mironov, A.A., Rizzuto, R. (2008). The role of Ca2 in the regulation of intracellular transport. In: Mironov, A.A., Pavelka, M. (eds) The Golgi Apparatus. Springer, Vienna. https://doi.org/10.1007/978-3-211-76310-0_11

Download citation

Publish with us

Policies and ethics