Skip to main content

The TRAPP complex

  • Chapter
The Golgi Apparatus
  • 1409 Accesses

Abstract

Intracellular transport of biosynthetic cargo from the endoplasmic reticulum to the plasma membrane occurs by membrane-bound vesicular or tubulove-sicular carriers that dissociate from a donor compartment and fuse with an acceptor compartment. The arrival of a transport carrier to the correct destination along the exocytic pathway is important for the appropriate spatio-temporal processing and delivery of the cargo molecules. Membrane fusion requires the formation of a trans SNARE complex (SNAREpin) of SNARE proteins contributed by the donor and acceptor membranes that is thought to overcome the energy barrier that would prevent two membranes from fusing. Prior to this event, however, proteins called tethering factors appear to act as physical links between membrane compartments (Whyte and Munro 2002). In addition to acting as physical links the tethering factors may contribute to the specificity of compartmental fusion by their interaction with various molecules on the donor and acceptor membranes. Two broad classes of tethering factors are represented by proteins containing extensive coiled-coil domains (such as p115/Uso1 in mammals/yeast) or by a number of large multiprotein complexes that mediate membrane traffic between various compartments within the cell (Whyte and Munro 2002). A common feature of the tethering factors seems to be their interaction with small GTPases of the Rab/Ypt family and with SNAREs that appears to contribute to the specificity of membrane fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan BB, Moyer BD, Balch WE (2000) Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289: 444–448

    Article  PubMed  CAS  Google Scholar 

  • Alvarez C, Fujita H, Hubbard A, Sztul E (1999) ER to Golgi transport: requirement for p115 at a pre-Golgi VTC stage. J Cell Biol 147: 1205–1222

    Article  PubMed  CAS  Google Scholar 

  • Barrowman J, Sacher M, Ferro-Novick S (2000) TRAPP stably associates with the Golgi and is required for vesicle docking. EMBO J 19: 862–869

    Article  PubMed  CAS  Google Scholar 

  • Belgareh-Touze N, Corral-Debrinski M, Launhardt H, Galan JM, Munder T, Le Panse S, Haguenauer-Tsapis R (2003) Yeast functional analysis: identification of two essential genes involved in ER to Golgi trafficking. Traffic 4: 607–617

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116: 153–166

    Article  PubMed  CAS  Google Scholar 

  • Brandon E, Szul T, Alvarez C, Grabski R, Benjamin R, Kawai R, Sztul E (2006) On and off membrane dynamics of the endoplasmic reticulum-Golgi tethering factor p115 in vivo. Mol Biol Cell 17: 2996–3008

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Yu S, Menon S, Cai Y, Lazarova D, Fu C, Reinisch K, Hay JC, Ferro-Novick S (2007) TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445: 941–944

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Zhang Y, Pypaert M, Walker L, Ferro-Novick S (2005) Mutants in trs120 disrupt traffic from the early endosome to the late Golgi. J Cell Biol 171: 823–833

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Ballew N, Barlowe C (1998) Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J 17: 2156–2165

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Barlowe C (2000) Asymmetric requirements fora Rab GTPase and SNARE proteins in fusion of COPII vesicles with acceptor membranes. J Cell Biol 149: 55–66

    Article  PubMed  CAS  Google Scholar 

  • Cox R, Chen SH, Yoo E, Segev N (2007) Conservation of the TRAPPII-specificsubunits of a Ypt/Rab exchanger complex. BMC Evol Biol 7: 12

    Article  PubMed  Google Scholar 

  • Ethell IM, Hagihara K, Miura Y, Irie F, Yamaguchi Y (2000) Synbindin, a novel syndecan-2-binding protein in neuronal dendritic spines. J Cell Biol 151: 53–68

    Article  PubMed  CAS  Google Scholar 

  • Fath S, Mancias JD, Bi X, Goldberg J (2007) Structure and organization of coat proteins in the COPII cage. Cell 129: 1325–1336

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141–147

    Article  PubMed  CAS  Google Scholar 

  • Gecz J, Shaw MA, Bellon JR, De Barros Lopes M (2003) Human wild-type SEDL protein functionally complements yeast Trs20p but some naturally occurring SEDL mutants do not. Gene 320: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Gedeon AK, Colley A, Jamieson R, Thompson EM, Rogers J, Sillence D, Tiller GE, Mulley JC, Gecz J (1999) Identification of the gene (SEDL) causing X-linked spondyloepi-physeal dysplasia tarda. Nat Genet 22: 400–404

    Article  PubMed  CAS  Google Scholar 

  • Gedeon AK, Tiller GE, Le Merrer M, Heuertz S, Tranebjaerg L, Chitayat D, Robertson S, Glass IA, Savarirayan R, Cole WG, Rimoin DL, Kousseff BG, Ohashi H, Zabel B, Munnich A, Gecz J, Mulley JC (2001) The molecular basis of X-linked spondyloepi-physeal dysplasia tarda. Am J Hum Genet 68: 1386–1397

    Article  PubMed  CAS  Google Scholar 

  • Ghosh AK, Majumder M, Steele R, White RA, Ray RB (2001) Anovel 16-kilodalton cellular protein physically interacts with and antagonizes the functional activity of c-myc promoter-binding protein 1. Mol Cell Biol 21: 655–662

    Article  PubMed  CAS  Google Scholar 

  • Ghosh AK, Steele R, Ray RB (2003) Modulation of human luteinizing hormone beta gene transcription by MIP-2A. J Biol Chem 278: 24033–24038

    Article  PubMed  CAS  Google Scholar 

  • Jang SB, Kim YG, Cho YS, Suh PG, Kim KH, Oh BH (2002) Crystal structure of SEDL and its implications for a genetic disease spondyloepiphyseal dysplasia tarda. J Biol Chem 277: 49863–49869

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Scarpa A, Zhang L, Stone S, Feliciano E, Ferro-Novick S (1998) A high copy suppressor screen reveals genetic interactions between BET3 and a new gene. Evidence for a novel complex in ER-to-Golgi transport. Genetics 149: 833–841

    PubMed  CAS  Google Scholar 

  • Kim YG, Raunser S, Munger C, Wagner J, Song YL, Cygler M, Walz T, Oh BH, Sacher M (2006) The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering. Cell 127: 817–830

    Article  PubMed  CAS  Google Scholar 

  • Kim YG, Sohn EJ, Seo J, Lee KJ, Lee HS, Hwang I, Whiteway M, Sacher M, Oh BH (2005) Crystal structure of bet3 reveals a novel mechanism for Golgi localization of tethering factor TRAPP. Nat Struct Mol Biol 12: 38–45

    Article  PubMed  CAS  Google Scholar 

  • Koumandou VL, Dacks JB, Coulson RM, Field MC (2007) Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol Biol 7: 29

    Article  PubMed  Google Scholar 

  • Kummel D, Muller JJ, Roske Y, Henke N, Heinemann U (2006) Structure of the Bet3-Tpc6B core of TRAPP: two Tpc6 paralogs form trimeric complexes with Bet3 and Mum2. J Mol Biol 361: 22–32

    Article  PubMed  Google Scholar 

  • Liang Y, Morozova N, Tokarev AA, Mulholland JW, Segev N (2007) The role of Trs65 in the Ypt/Rab guanine nucleotide exchange factor function of the TRAPP II complex. Mol Biol Cell 18:2533–2541

    Article  PubMed  CAS  Google Scholar 

  • Loh E, Peter F, Subramaniam VN, Hong W (2005) Mammalian Bet3 functions as a cytosolic factor participating in transport from the ER to the Golgi apparatus. J Cell Sci 118: 1209–1222

    Article  PubMed  CAS  Google Scholar 

  • Meiling-Wesse K, Epple UD, Krick R, Barth H, Appelles A, Voss C, Eskelinen EL, Thumm M (2005) Trs85 (Gsg1), a component of the TRAPP complexes, is required for the organization of the preautophagosomal structure during selective autophagy via the Cvt pathway. J Biol Chem 280: 33669–33678

    Article  PubMed  CAS  Google Scholar 

  • Mironov AA, Mironov AA Jr, Beznoussenko GV, Trucco A, Lupetti P, Smith JD, Geerts WJ, Koster AJ, Burger KN, Martone ME, Deerinck TJ, Ellisman MH, Luini A (2003) ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev Cell 5: 583–594

    Article  PubMed  CAS  Google Scholar 

  • Morozova N, Liang Y, Tokarev AA, Chen SH, Cox R, Andrejic J, Lipatova Z, Sciorra VA, Emr SD, Segev N (2006) TRAPPII subunits are required for the specificity switch of a Ypt-Rab GEF. Nat Cell Biol 8: 1263–1269

    Article  PubMed  CAS  Google Scholar 

  • Morsomme P, Riezman H (2002) The Rab GTPase Ypt1p and tethering factors couple protein sorting at the ER to vesicle targeting to the Golgi apparatus. Dev Cell 2: 307–317

    Article  PubMed  CAS  Google Scholar 

  • Moyer BD, Allan BB, Balch WE (2001) Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis-Golgi tethering. Traffic 2: 268–276

    Article  PubMed  CAS  Google Scholar 

  • Nazarko TY, Huang J, Nicaud JM, Klionsky DJ, Sibirny AA (2005) Trs85 is required for macroautophagy, pexophagy and cytoplasm to vacuole targeting in Yarrowia lipolytica and Saccharomyces cerevisiae. Autophagy 1: 37–45

    PubMed  CAS  Google Scholar 

  • Rossi G, Kolstad K, Stone S, Palluault F, Ferro-Novick S (1995) BET3 encodes a novel hydrophilic protein that acts in conjunction with yeast SNAREs. Mol Biol Cell 6:1769–1780

    PubMed  CAS  Google Scholar 

  • Sacher M, Barrowman J, Schieltz D, Yates JR III, Ferro-Novick S (2000) Identification and characterization of five new subunits of TRAPP. Eur J Cell Biol 79: 71–80

    Article  PubMed  CAS  Google Scholar 

  • Sacher M, Barrowman J, Wang W, Horecka J, Zhang Y, Pypaert M, Ferro-Novick S (2001) TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. Mol Cell 7: 433–442

    Article  PubMed  CAS  Google Scholar 

  • Sacher M, Jiang Y, Barrowman J, Scarpa A, Burston J, Zhang L, Schieltz D, Yates JR III, Abeliovich H, Ferro-Novick S (1998) TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J 17: 2494–2503

    Article  PubMed  CAS  Google Scholar 

  • Sapperstein SK, Lupashin VV, Schmitt HD, Waters MG (1996) Assembly of the ER to Golgi SNARE complex requires Uso1p. J Cell Biol 132: 755–767

    Article  PubMed  CAS  Google Scholar 

  • Sciorra VA, Audhya A, Parsons AB, Segev N, Boone C, Emr SD (2005) Synthetic genetic array analysis of the PtdIns 4-kinase Pik1p identifies components in a Golgi-specif ic Ypt31/rab-GTPase signaling pathway. Mol Biol Cell 16: 776–793

    Article  PubMed  CAS  Google Scholar 

  • Turnbull AP, Kummel D, Prinz B, Holz C, Schultchen J, Lang C, Niesen FH, Hofmann KP, Delbrück H, Behlke J, Müuller EC, Jarosch E, Sommer T, Heinemann U (2005) Structure of palmitoylated BET3: insights into TRAPP complex assembly and membrane localization. EMBO J 24: 875–884

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Sacher M, Ferro-Novick S (2000) TRAPP stimulates guanine nucleotide exchange on Ypt1p. J Cell Biol 151: 289–296

    Article  PubMed  CAS  Google Scholar 

  • Whyte JR, Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115:2627–2637

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Jigami Y (2002) Mutation of TRS130, which encodes a component of the TRAPP II complex, activates transcription of OCH1 in Saccharomycescerevisiae. Curr Genet 42: 85–93

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Satoh A, Pypaert M, Mullen K, Hay JC, Ferro-Novick S (2006) mBet3p is required for homotypic COPII vesicle tethering in mammalian cells. J Cell Biol 174:359–368

    Article  PubMed  CAS  Google Scholar 

  • Zhang CJ, Bowzard JB, Greene M, Anido A, Stearns K, Kahn RA (2002) Genetic interactions link ARF1, YPT31/32 and TRS130. Yeast 19: 1075–1086

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Scanu, T., Wilson, C. (2008). The TRAPP complex. In: Mironov, A.A., Pavelka, M. (eds) The Golgi Apparatus. Springer, Vienna. https://doi.org/10.1007/978-3-211-76310-0_10

Download citation

Publish with us

Policies and ethics