Skip to main content

Pulmonary Toxicities of Immunotherapy

  • Chapter
  • First Online:
Immunotherapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1342))

Abstract

Immune checkpoint inhibitors are a form of immunotherapy that are increasingly being used in a wide variety of cancers. Immune-related adverse events (irAEs) pose a major challenge in the treatment of cancer patients. Pneumonitis, the most common lung irAE, can cause significant disruptions in the treatment of cancer and may be life-threatening. The goal of this chapter is to instruct readers on the incidence and clinical manifestations of pneumonitis and to offer guidance in the evaluation and treatment of patients with pneumonitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, A. S., Ormiston-Smith, N., & Sasieni, P. D. (2015). Trends in the lifetime risk of developing cancer in Great Britain: Comparison of risk for those born from 1930 to 1960. British Journal of Cancer, 112(5), 943–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miller, K. D., Siegel, R. L., Lin, C. C., et al. (2016). Cancer treatment and survivorship statistics, 2016. CA: A Cancer Journal for Clinicians, 66(4), 271–289.

    Google Scholar 

  3. Baxevanis, C. N., Perez, S. A., & Papamichail, M. (2009). Cancer immunotherapy. Critical Reviews in Clinical Laboratory Sciences, 46(4), 167–189.

    Article  CAS  PubMed  Google Scholar 

  4. Farkona, S., Diamandis, E. P., & Blasutig, I. M. (2016). Cancer immunotherapy: The beginning of the end of cancer? BMC Medicine, 14, 73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Dillman, R. O. (2011). Cancer immunotherapy. Cancer Biotherapy & Radiopharmaceuticals, 26(1), 1–64.

    Article  CAS  Google Scholar 

  6. Oiseth, S. J., & Aziz, M. S. (2017). Cancer immunotherapy: A brief review of the history, possibilities, and challenges ahead. Journal of Cancer Metastasis and Treatment, 3, 250–261.

    Article  CAS  Google Scholar 

  7. Finn, O. J. (2012). Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Annals of Oncology, 23(Suppl 8), viii6–9.

    PubMed  Google Scholar 

  8. Sharma, P., & Allison, J. P. (2015). Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell, 161(2), 205–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barber, D. L., Wherry, E. J., Masopust, D., et al. (2006). Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 439(7077), 682–687.

    Article  CAS  PubMed  Google Scholar 

  10. Francisco, L. M., Sage, P. T., & Sharpe, A. H. (2010). The PD-1 pathway in tolerance and autoimmunity. Immunological Reviews, 236, 219–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keir, M. E., Butte, M. J., Freeman, G. J., & Sharpe, A. H. (2008). PD-1 and its ligands in tolerance and immunity. Annual Review of Immunology, 26, 677–704.

    Article  CAS  PubMed  Google Scholar 

  12. Fife, B. T., & Pauken, K. E. (2011). The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Annals of the New York Academy of Sciences, 1217, 45–59.

    Article  CAS  PubMed  Google Scholar 

  13. Ishida, Y., Agata, Y., Shibahara, K., & Honjo, T. (1992). Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. The EMBO Journal, 11(11), 3887–3895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parry, R. V., Chemnitz, J. M., Frauwirth, K. A., et al. (2005). CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Molecular and Cellular Biology, 25(21), 9543–9553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Freeman, G. J., Long, A. J., Iwai, Y., et al. (2000). Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. The Journal of Experimental Medicine, 192(7), 1027–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Riley, J. L. (2009). PD-1 signaling in primary T cells. Immunological Reviews, 229(1), 114–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Latchman, Y., Wood, C. R., Chernova, T., et al. (2001). PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunology, 2(3), 261–268.

    Article  CAS  PubMed  Google Scholar 

  18. Francisco, L. M., Salinas, V. H., Brown, K. E., et al. (2009). PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. The Journal of Experimental Medicine, 206(13), 3015–3029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amarnath, S., Mangus, C. W., Wang, J. C., et al. (2011). The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Science Translational Medicine, 3(111), 111ra120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wang, X., Teng, F., Kong, L., & Yu, J. (2016). PD-L1 expression in human cancers and its association with clinical outcomes. Oncotargets and Therapy, 9, 5023–5039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gordon, S. R., Maute, R. L., Dulken, B. W., et al. (2017). PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature, 545(7655), 495–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buchbinder, E. I., & Desai, A. (2016). CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. American Journal of Clinical Oncology, 39(1), 98–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharpe, A. H., & Abbas, A. K. (2006). T-cell costimulation--biology, therapeutic potential, and challenges. The New England Journal of Medicine, 355(10), 973–975.

    Article  CAS  PubMed  Google Scholar 

  24. Egen, J. G., Kuhns, M. S., & Allison, J. P. (2002). CTLA-4: New insights into its biological function and use in tumor immunotherapy. Nature Immunology, 3(7), 611–618.

    Article  CAS  PubMed  Google Scholar 

  25. Teft, W. A., Kirchhof, M. G., & Madrenas, J. (2006). A molecular perspective of CTLA-4 function. Annual Review of Immunology, 24, 65–97.

    Article  CAS  PubMed  Google Scholar 

  26. Krummel, M. F., & Allison, J. P. (1995). CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. The Journal of Experimental Medicine, 182(2), 459–465.

    Article  CAS  PubMed  Google Scholar 

  27. Walunas, T. L., Bakker, C. Y., & Bluestone, J. A. (1996). CTLA-4 ligation blocks CD28-dependent T cell activation. The Journal of Experimental Medicine, 183(6), 2541–2550.

    Article  CAS  PubMed  Google Scholar 

  28. Tivol, E. A., Borriello, F., Schweitzer, A. N., Lynch, W. P., Bluestone, J. A., & Sharpe, A. H. (1995). Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 3(5), 541–547.

    Article  CAS  PubMed  Google Scholar 

  29. Waterhouse, P., Penninger, J. M., Timms, E., et al. (1995). Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science (New York, NY), 270(5238), 985–988.

    Article  CAS  Google Scholar 

  30. Walunas, T. L., Lenschow, D. J., Bakker, C. Y., et al. (1994). CTLA-4 can function as a negative regulator of T cell activation. Immunity, 1(5), 405–413.

    Article  CAS  PubMed  Google Scholar 

  31. Darrasse-Jèze, G., Deroubaix, S., Mouquet, H., et al. (2009). Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. The Journal of Experimental Medicine, 206(9), 1853–1862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mandelbrot, D. A., McAdam, A. J., & Sharpe, A. H. (1999). B7-1 or B7-2 is required to produce the lymphoproliferative phenotype in mice lacking cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). The Journal of Experimental Medicine, 189(2), 435–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Piccirillo, C. A., & Shevach, E. M. (2004). Naturally-occurring CD4+CD25+ immunoregulatory T cells: Central players in the arena of peripheral tolerance. Seminars in Immunology, 16(2), 81–88.

    Article  CAS  PubMed  Google Scholar 

  34. Syn, N. L., Teng, M. W. L., Mok, T. S. K., & Soo, R. A. (2017). De-novo and acquired resistance to immune checkpoint targeting. The Lancet Oncology, 18(12), e731–e741.

    Article  PubMed  Google Scholar 

  35. Schadendorf, D., Hodi, F. S., Robert, C., et al. (2015). Pooled analysis of Long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. Journal of Clinical Oncology, 33(17), 1889–1894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramagopal, U. A., Liu, W., Garrett-Thomson, S. C., et al. (2017). Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab. Proceedings of the National Academy of Sciences of the United States of America, 114(21), E4223–E4232.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hodi, F. S., O’Day, S. J., McDermott, D. F., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. The New England Journal of Medicine, 363(8), 711–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tan, S., Zhang, H., Chai, Y., et al. (2017). An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nature Communications, 8, 14369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tan, S., Chen, D., Liu, K., et al. (2016). Crystal clear: Visualizing the intervention mechanism of the PD-1/PD-L1 interaction by two cancer therapeutic monoclonal antibodies. Protein & Cell, 7(12), 866–877.

    Article  CAS  Google Scholar 

  40. Wang, D. Y., Salem, J. E., Cohen, J. V., et al. (2018). Fatal toxic effects associated with immune checkpoint inhibitors: A systematic review and meta-analysis. JAMA Oncology, 4(12), 1721–1728.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Naidoo, J., Wang, X., Woo, K. M., et al. (2017). Pneumonitis in patients treated with anti-programmed Death-1/programmed death ligand 1 therapy. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 35(7), 709–717.

    Article  CAS  Google Scholar 

  42. Gemmill, J. A. L., & Sher, A. (2020). Anti-PD-1-related exacerbation of interstitial lung disease in a patient with non-small cell lung Cancer: A case presentation and review of the literature. Cancer Investigation, 38(6), 365–371.

    Article  CAS  Google Scholar 

  43. Kim, C., Gao, J., Shannon, V. R., & Siefker-Radtke, A. (2016). Systemic sarcoidosis first manifesting in a tattoo in the setting of immune checkpoint inhibition. BML Case Reports, 2016.

    Google Scholar 

  44. Berthod, G., Lazor, R., Letovanec, I., et al. (2012). Pulmonary sarcoid-like granulomatosis induced by ipilimumab. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 30(17), e156–e159.

    Article  Google Scholar 

  45. Reuss, J. E., Kunk, P. R., Stowman, A. M., Gru, A. A., Slingluff, C. L., Jr., & Gaughan, E. M. (2016). Sarcoidosis in the setting of combination ipilimumab and nivolumab immunotherapy: A case report & review of the literature. Journal for Immunotherapy of Cancer, 4, 94.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mitropoulou, G., Daccord, C., Sauty, A., et al. (2020). Immunotherapy-induced airway disease: A new pattern of lung toxicity of immune checkpoint inhibitors. Respiration, 99(2), 181–186.

    Article  CAS  PubMed  Google Scholar 

  47. Yamaguchi, T., Shimizu, J., Hasegawa, T., et al. (2018). Pre-existing pulmonary fibrosis is a risk factor for anti-PD-1-related pneumonitis in patients with non-small cell lung cancer: A retrospective analysis. Lung cancer (Amsterdam, Netherlands), 125, 212–217.

    Article  Google Scholar 

  48. Antoniou, K. M., Margaritopoulos, G. A., Tomassetti, S., Bonella, F., Costabel, U., & Poletti, V. (2014). Interstitial lung disease. European Respiratory Review, 23(131), 40–54.

    Article  PubMed  Google Scholar 

  49. Lim, G. I., Lee, K. H., Jeong, S. W., et al. (1996). Clinical features of interstitial lung diseases. The Korean Journal of Internal Medicine, 11(2), 113–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Glasser, S. W., Hardie, W. D., & Hagood, J. S. (2010). Pathogenesis of interstitial lung disease in children and adults. Pediatric Allergy, Immunology and Pulmonology, 23(1), 9–14.

    Article  Google Scholar 

  51. Nishino, M., Ramaiya, N. H., Awad, M. M., et al. (2016). PD-1 inhibitor-related pneumonitis in advanced cancer patients: Radiographic patterns and clinical course. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 22(24), 6051–6060.

    Article  CAS  Google Scholar 

  52. Tirumani, S. H., Ramaiya, N. H., Keraliya, A., et al. (2015). Radiographic profiling of immune-related adverse events in advanced melanoma patients treated with ipilimumab. Cancer Immunology Research, 3(10), 1185–1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Epler, G. R. (1992). Bronchiolitis obliterans organizing pneumonia: Definition and clinical features. Chest, 102(1 Suppl), 2S–6S.

    Article  CAS  PubMed  Google Scholar 

  54. Epler, G. R., Colby, T. V., McLoud, T. C., Carrington, C. B., & Gaensler, E. A. (1985). Bronchiolitis obliterans organizing pneumonia. The New England Journal of Medicine, 312(3), 152–158.

    Article  CAS  PubMed  Google Scholar 

  55. Cordier, J. F., Loire, R., & Brune, J. (1989). Idiopathic bronchiolitis obliterans organizing pneumonia. Definition of characteristic clinical profiles in a series of 16 patients. Chest, 96(5), 999–1004.

    Article  CAS  PubMed  Google Scholar 

  56. Guerry-Force, M. L., Müller, N. L., Wright, J. L., et al. (1987). A comparison of bronchiolitis obliterans with organizing pneumonia, usual interstitial pneumonia, and small airways disease. The American Review of Respiratory Disease, 135(3), 705–712.

    CAS  PubMed  Google Scholar 

  57. King, T. E., Jr. (2011). Organizing pneumonia. In M. Schwarz & T. King (Eds.), Interstitial lung disease. People’s Medical Publishing House.

    Google Scholar 

  58. Cordier, J. F. (2000). Organising pneumonia. Thorax, 55(4), 318–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cordier, J. F. (2006). Cryptogenic organising pneumonia. The European Respiratory Journal, 28(2), 422–446.

    Article  PubMed  Google Scholar 

  60. Godoy, M. C., Viswanathan, C., Marchiori, E., et al. (2012). The reversed halo sign: Update and differential diagnosis. The British Journal of Radiology, 85(1017), 1226–1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Friedman, C. F., Proverbs-Singh, T. A., & Postow, M. A. (2016). Treatment of the immune-related adverse effects of immune checkpoint inhibitors: A review. JAMA Oncology, 2(10), 1346–1353.

    Article  PubMed  Google Scholar 

  62. Wells, A. U., & Hirani, N. (2008). Interstitial lung disease guideline. Thorax, 63(Suppl 5), v1–v58.

    Article  PubMed  Google Scholar 

  63. Bradley, B., Branley, H. M., Egan, J. J., et al. (2008). Interstitial lung disease guideline: The British Thoracic Society in collaboration with the Thoracic Society of Australia and New Zealand and the Irish Thoracic society. Thorax, 63(Suppl 5), v1–58.

    PubMed  Google Scholar 

  64. Pathak, V., Kuhn, J. M., Durham, C., Funkhouser, W. K., & Henke, D. C. (2014). Macrolide use leads to clinical and radiological improvement in patients with cryptogenic organizing pneumonia. Annals of the American Thoracic Society, 11(1), 87–91.

    Article  CAS  PubMed  Google Scholar 

  65. Ding, Q. L., Lv, D., Wang, B. J., et al. (2015). Macrolide therapy in cryptogenic organizing pneumonia: A case report and literature review. Experimental and Therapeutic Medicine, 9(3), 829–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Purcell, I. F., Bourke, S. J., & Marshall, S. M. (1997). Cyclophosphamide in severe steroid-resistant bronchiolitis obliterans organizing pneumonia. Respiratory Medicine, 91(3), 175–177.

    Article  CAS  PubMed  Google Scholar 

  67. Koinuma, D., Miki, M., Ebina, M., et al. (2002). Successful treatment of a case with rapidly progressive bronchiolitis obliterans organizing pneumonia (BOOP) using cyclosporin A and corticosteroid. Internal Medicine, 41(1), 26–29.

    Article  PubMed  Google Scholar 

  68. Puzanov, I., Diab, A., Abdallah, K., et al. (2017). Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. Journal for Immunotherapy of Cancer, 5(1), 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brahmer, J. R., Lacchetti, C., Schneider, B. J., et al. (2018). Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 36(17), 1714–1768.

    Article  CAS  Google Scholar 

  70. Haanen, J., Carbonnel, F., Robert, C., et al. (2017). Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 28(suppl_4), iv119–iv142.

    Article  CAS  Google Scholar 

  71. NCCN. National Comprehensive Cancer Network Management of immunotherapy-related toxicities (Version 12020). https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf

  72. Lai, K., Sheshadri, A., Adrianza, A., et al. (2020). Role of infliximab in immune checkpoint inhibitor-induced pneumonitis. Journal of Immunotherapy and Precision Oncology, 3, 172–174.

    Article  Google Scholar 

  73. Stroud, C. R., Hegde, A., Cherry, C., et al. (2019). Tocilizumab for the management of immune mediated adverse events secondary to PD-1 blockade. Journal of Oncology Pharmacy Practice, 25(3), 551–557.

    Article  CAS  PubMed  Google Scholar 

  74. Sollano-Sancho, I., Rubio-Cebrian, B., de la Cruz, M. L., & San-Jose-Montano, B. (2020). Successful treatment of interstitial pneumonitis with anakinra in a patient with adult-onset Still’s disease. European Journal of Hospital Pharmacy, ejhpharm-2020-002377.

    Google Scholar 

  75. Romagnoli, M., Nannini, C., Piciucchi, S., et al. (2011). Idiopathic nonspecific interstitial pneumonia: An interstitial lung disease associated with autoimmune disorders? The European Respiratory Journal, 38(2), 384–391.

    Article  CAS  PubMed  Google Scholar 

  76. Park, I. N., Jegal, Y., Kim, D. S., et al. (2009). Clinical course and lung function change of idiopathic nonspecific interstitial pneumonia. The European Respiratory Journal, 33(1), 68–76.

    Article  CAS  PubMed  Google Scholar 

  77. Silva, C. I., Muller, N. L., Lynch, D. A., et al. (2008). Chronic hypersensitivity pneumonitis: Differentiation from idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia by using thin-section CT. Radiology, 246(1), 288–297.

    Article  PubMed  Google Scholar 

  78. Travis, W. D., Hunninghake, G., King, T. E., Jr., et al. (2008). Idiopathic nonspecific interstitial pneumonia: Report of an American Thoracic Society project. American Journal of Respiratory and Critical Care Medicine, 177(12), 1338–1347.

    Article  PubMed  Google Scholar 

  79. Akira, M., Inoue, Y., Kitaichi, M., Yamamoto, S., Arai, T., & Toyokawa, K. (2009). Usual interstitial pneumonia and nonspecific interstitial pneumonia with and without concurrent emphysema: Thin-section CT findings. Radiology, 251(1), 271–279.

    Article  PubMed  Google Scholar 

  80. American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. (2002). This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. American Journal of Respiratory and Critical Care Medicine, 165(2), 277–304.

    Google Scholar 

  81. Malmberg, P., Rask-Andersen, A., & Rosenhall, L. (1993). Exposure to microorganisms associated with allergic alveolitis and febrile reactions to mold dust in farmers. Chest, 103(4), 1202–1209.

    Article  CAS  PubMed  Google Scholar 

  82. Zeiss, C. R., Kanellakes, T. M., Bellone, J. D., Levitz, D., Pruzansky, J. J., & Patterson, R. (1980). Immunoglobulin E-mediated asthma and hypersensitivity pneumonitis with precipitating anti-hapten antibodies due to diphenylmethane diisocyanate (MDI) exposure. The Journal of Allergy and Clinical Immunology, 65(5), 347–352.

    Article  CAS  PubMed  Google Scholar 

  83. Hashisako, M., & Fukuoka, J. (2015). Pathology of idiopathic interstitial pneumonias. Clinical Medicine Insights Circulatory, Respiratory and Pulmonary Medicine, 9(Suppl 1), 123–133.

    PubMed  Google Scholar 

  84. Flaherty, K. R., Martinez, F. J., Travis, W., & Lynch, J. P., 3rd. (2001). Nonspecific interstitial pneumonia (NSIP). Seminars in Respiratory and Critical Care Medicine, 22(4), 423–434.

    Article  CAS  PubMed  Google Scholar 

  85. Schwaiblmair, M., Behr, W., Haeckel, T., Märkl, B., Foerg, W., & Berghaus, T. (2012). Drug induced interstitial lung disease. Open Respiratory Medicine Journal, 6, 63–74.

    Article  Google Scholar 

  86. Kaarteenaho, R., & Kinnula, V. L. (2011). Diffuse alveolar damage: A common phenomenon in progressive interstitial lung disorders. Pulmonary Medicine, 2011, 531302.

    Article  PubMed  Google Scholar 

  87. Kao, K. C., Hu, H. C., Chang, C. H., et al. (2015). Diffuse alveolar damage associated mortality in selected acute respiratory distress syndrome patients with open lung biopsy. Critical Care, 19(1), 228.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cardinal-Fernández, P., Lorente, J. A., Ballén-Barragán, A., & Matute-Bello, G. (2017). Acute respiratory distress syndrome and diffuse alveolar damage. New insights on a complex relationship. Annals of the American Thoracic Society, 14(6), 844–850.

    Article  PubMed  Google Scholar 

  89. Ferguson, N. D., Fan, E., Camporota, L., et al. (2012). The Berlin definition of ARDS: An expanded rationale, justification, and supplementary material. Intensive Care Medicine, 38(10), 1573–1582.

    Article  PubMed  Google Scholar 

  90. Ranieri, V. M., Rubenfeld, G. D., Thompson, B. T., et al. (2012). Acute respiratory distress syndrome: The Berlin definition. Journal of the American Medical Association, 307(23), 2526–2533.

    PubMed  Google Scholar 

  91. Guerin, C., Bayle, F., Leray, V., et al. (2015). Open lung biopsy in nonresolving ARDS frequently identifies diffuse alveolar damage regardless of the severity stage and may have implications for patient management. Intensive Care Medicine, 41(2), 222–230.

    Article  PubMed  Google Scholar 

  92. Matthay, M. A., & Zemans, R. L. (2011). The acute respiratory distress syndrome: Pathogenesis and treatment. Annual Review of Pathology, 6, 147–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Spira, D., Wirths, S., Skowronski, F., et al. (2013). Diffuse alveolar hemorrhage in patients with hematological malignancies: HRCT patterns of pulmonary involvement and disease course. Clinical Imaging, 37(4), 680–686.

    Article  PubMed  Google Scholar 

  94. Goodman, L. R. (1996). Congestive heart failure and adult respiratory distress syndrome. New insights using computed tomography. Radiologic Clinics of North America, 34(1), 33–46.

    Article  CAS  PubMed  Google Scholar 

  95. Gattinoni, L., Presenti, A., Torresin, A., et al. (1986). Adult respiratory distress syndrome profiles by computed tomography. Journal of Thoracic Imaging, 1(3), 25–30.

    Article  CAS  PubMed  Google Scholar 

  96. Pelosi, P., Crotti, S., Brazzi, L., & Gattinoni, L. (1996). Computed tomography in adult respiratory distress syndrome: What has it taught us? The European Respiratory Journal, 9(5), 1055–1062.

    Article  CAS  PubMed  Google Scholar 

  97. Rogers, S. (1999). Spencer’s pathology of the lung. Histopathology, 34(5), 470.

    Article  CAS  PubMed  Google Scholar 

  98. Naidoo, J., Page, D. B., Li, B. T., et al. (2015). Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Annals of Oncology, 26(12), 2375–2391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Michot, J. M., Bigenwald, C., Champiat, S., et al. (2016). Immune-related adverse events with immune checkpoint blockade: a comprehensive review. European Journal of Cancer (Oxford, England: 1990), 54, 139–148.

    Article  CAS  Google Scholar 

  100. Claessens, Y. E., Debray, M. P., Tubach, F., et al. (2015). Early chest computed tomography scan to assist diagnosis and guide treatment decision for suspected community-acquired pneumonia. American Journal of Respiratory and Critical Care Medicine, 192(8), 974–982.

    Article  PubMed  Google Scholar 

  101. Hammond, E., Sloan, C., Newell, J. D., Jr., et al. (2017). Comparison of low- and ultralow-dose computed tomography protocols for quantitative lung and airway assessment. Medical Physics, 44(9), 4747–4757.

    Article  PubMed  Google Scholar 

  102. Franzen, D., Schad, K., Kowalski, B., et al. (2018). Ipilimumab and early signs of pulmonary toxicity in patients with metastastic melanoma: A prospective observational study. Cancer Immunology, Immunotherapy, 67(1), 127–134.

    Article  CAS  PubMed  Google Scholar 

  103. Suresh, K., Naidoo, J., Zhong, Q., et al. (2019). The alveolar immune cell landscape is dysregulated in checkpoint inhibitor pneumonitis. The Journal of Clinical Investigation, 129(10), 4305–4315.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Raghu, G., Mageto, Y. N., Lockhart, D., Schmidt, R. A., Wood, D. E., & Godwin, J. D. (1999). The accuracy of the clinical diagnosis of new-onset idiopathic pulmonary fibrosis and other interstitial lung disease: A prospective study. Chest, 116(5), 1168–1174.

    Article  CAS  PubMed  Google Scholar 

  105. Troy, L. K., Grainge, C., Corte, T. J., et al. (2020). Diagnostic accuracy of transbronchial lung cryobiopsy for interstitial lung disease diagnosis (COLDICE): A prospective, comparative study. The Lancet Respiratory Medicine, 8(2), 171–181.

    Article  CAS  PubMed  Google Scholar 

  106. Maldonado, F., Danoff, S. K., Wells, A. U., et al. (2020). Transbronchial cryobiopsy for the diagnosis of interstitial lung diseases: CHEST guideline and expert panel report. Chest, 157(4), 1030–1042.

    Article  PubMed  Google Scholar 

  107. Kennedy, L. B., & Salama, A. K. S. (2020). A review of cancer immunotherapy toxicity. CA: A Cancer Journal for Clinicians, 70(2), 86–104.

    Google Scholar 

  108. Raschi, E., Gatti, M., Gelsomino, F., Ardizzoni, A., Poluzzi, E., & De Ponti, F. (2020). Lessons to be learnt from real-world studies on immune-related adverse events with checkpoint inhibitors: A clinical perspective from pharmacovigilance. Targeted Oncology, 15(4), 449–466.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nishino, M., Giobbie-Hurder, A., Hatabu, H., Ramaiya, N. H., & Hodi, F. S. (2016). Incidence of programmed cell death 1 inhibitor-related pneumonitis in patients with advanced Cancer: A systematic review and meta-analysis. JAMA Oncology, 2(12), 1607–1616.

    Article  PubMed  Google Scholar 

  110. Antonia, S. J., Villegas, A., Daniel, D., et al. (2017). Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. The New England Journal of Medicine, 377(20), 1919–1929.

    Article  CAS  PubMed  Google Scholar 

  111. Fujii, T., Colen, R. R., Bilen, M. A., et al. (2018). Incidence of immune-related adverse events and its association with treatment outcomes: The MD Anderson Cancer Center experience. Investigational New Drugs, 36(4), 638–646.

    Article  CAS  PubMed  Google Scholar 

  112. Shohdy, K. S., & Abdel-Rahman, O. (2017). Risk of Pneumonitis with Different Immune Checkpoint Inhibitors in NSCLC. Annals of Translational Medicine, 5(17), 365.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Topalian, S. L., Sznol, M., McDermott, D. F., et al. (2014). Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 32(10), 1020–1030.

    Article  CAS  Google Scholar 

  114. Borghaei, H., Paz-Ares, L., Horn, L., et al. (2015). Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. The New England Journal of Medicine, 373(17), 1627–1639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Brahmer, J., Reckamp, K. L., Baas, P., et al. (2015). Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung Cancer. The New England Journal of Medicine, 373(2), 123–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Garon, E. B., Rizvi, N. A., Hui, R., et al. (2015). Pembrolizumab for the treatment of non-small-cell lung cancer. The New England Journal of Medicine, 372(21), 2018–2028.

    Article  PubMed  Google Scholar 

  117. Herbst, R. S., Baas, P., Kim, D. W., et al. (2016). Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet (London, England), 387(10027), 1540–1550.

    Article  CAS  Google Scholar 

  118. Reck, M., Rodriguez-Abreu, D., Robinson, A. G., et al. (2016). Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. The New England Journal of Medicine, 375(19), 1823–1833.

    Article  CAS  PubMed  Google Scholar 

  119. Khunger, M., Rakshit, S., Pasupuleti, V., et al. (2017). Incidence of pneumonitis with use of programmed death 1 and programmed death-ligand 1 inhibitors in non-small cell lung cancer: A systematic review and meta-analysis of trials. Chest, 152(2), 271–281.

    Article  PubMed  Google Scholar 

  120. Robert, C., Long, G. V., Brady, B., et al. (2015). Nivolumab in previously untreated melanoma without BRAF mutation. The New England Journal of Medicine, 372(4), 320–330.

    Article  CAS  PubMed  Google Scholar 

  121. Reck, M., Rodríguez-Abreu, D., Robinson, A. G., et al. (2016). Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung Cancer. The New England Journal of Medicine, 375(19), 1823–1833.

    Article  CAS  PubMed  Google Scholar 

  122. Nishino, M., Hatabu, H., Hodi, F. S., & Ramaiya, N. H. (2017). Drug-related pneumonitis in the era of precision cancer therapy. JCO Precision Oncology, 1.

    Google Scholar 

  123. Kwon, E. D., Drake, C. G., Scher, H. I., et al. (2014). Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): A multicentre, randomised, double-blind, phase 3 trial. The Lancet Oncology, 15(7), 700–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Robert, C., Schachter, J., Long, G. V., et al. (2015). Pembrolizumab versus Ipilimumab in Advanced Melanoma. The New England Journal of Medicine, 372(26), 2521–2532.

    Article  CAS  PubMed  Google Scholar 

  125. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. The New England Journal of Medicine, 373(1), 23–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Khoja, L., Day, D., Wei-Wu Chen, T., Siu, L. L., & Hansen, A. R. (2017). Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: A systematic review. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 28(10), 2377–2385.

    Article  CAS  Google Scholar 

  127. Ryu, J. H., Colby, T. V., Hartman, T. E., & Vassallo, R. (2001). Smoking-related interstitial lung diseases: A concise review. The European Respiratory Journal, 17(1), 122–132.

    Article  CAS  PubMed  Google Scholar 

  128. Wu, J., Hong, D., Zhang, X., Lu, X., & Miao, J. (2017). PD-1 inhibitors increase the incidence and risk of pneumonitis in cancer patients in a dose-independent manner: A meta-analysis. Scientific Reports, 7, 44173.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Shibaki, R., Murakami, S., Matsumoto, Y., et al. (2020). Association of immune-related pneumonitis with the presence of preexisting interstitial lung disease in patients with non-small lung cancer receiving anti-programmed cell death 1 antibody. Cancer Immunology, Immunotherapy, 69(1), 15–22.

    Article  CAS  PubMed  Google Scholar 

  130. Kanai, O., Kim, Y. H., Demura, Y., et al. (2018). Efficacy and safety of nivolumab in non-small cell lung cancer with preexisting interstitial lung disease. Thoracic Cancer, 9(7), 847–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cui, P., Liu, Z., Wang, G., et al. (2018). Risk factors for pneumonitis in patients treated with anti-programmed death-1 therapy: A case-control study. Cancer Medicine, 7(8), 4115–4120.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Suresh, K., Voong, K. R., Shankar, B., et al. (2018). Pneumonitis in non-small cell lung cancer patients receiving immune checkpoint immunotherapy: Incidence and risk factors. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 13(12), 1930–1939.

    Article  CAS  Google Scholar 

  133. Suresh, K., Psoter, K. J., Voong, K. R., et al. (2019). Impact of checkpoint inhibitor pneumonitis on survival in NSCLC patients receiving immune checkpoint immunotherapy. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 14(3), 494–502.

    Article  CAS  Google Scholar 

  134. El Majzoub, I., Qdaisat, A., Thein, K. Z., et al. (2019). Adverse effects of immune checkpoint therapy in Cancer patients visiting the emergency Department of a Comprehensive Cancer Center. Annals of Emergency Medicine, 73(1), 79–87.

    Article  PubMed  Google Scholar 

  135. Jabbour, S. K., Lee, K. H., Frost, N., et al. (2020). Phase II study of pembrolizumab (pembro) plus platinum doublet chemotherapy and radiotherapy as first-line therapy for unresectable, locally advanced stage III NSCLC: KEYNOTE-799. Journal of Clinical Oncology, 38(15_suppl), 9008–9008.

    Article  Google Scholar 

  136. Kelly, K., Infante, J. R., Taylor, M. H., et al. (2018). Safety profile of avelumab in patients with advanced solid tumors: A pooled analysis of data from the phase 1 JAVELIN solid tumor and phase 2 JAVELIN Merkel 200 clinical trials. Cancer, 124(9), 2010–2017.

    Article  CAS  PubMed  Google Scholar 

  137. Pillai, R. N., Behera, M., Owonikoko, T. K., et al. (2018). Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer: A systematic analysis of the literature. Cancer, 124(2), 271–277.

    Article  CAS  PubMed  Google Scholar 

  138. Wolchok, J. D., Chiarion-Sileni, V., Gonzalez, R., et al. (2017). Overall survival with combined nivolumab and ipilimumab in advanced melanoma. The New England Journal of Medicine, 377(14), 1345–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ribas, A., Shin, D. S., Zaretsky, J., et al. (2016). PD-1 blockade expands intratumoral memory T cells. Cancer Immunology Research, 4(3), 194–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bowyer, S., Prithviraj, P., Lorigan, P., et al. (2016). Efficacy and toxicity of treatment with the anti-CTLA-4 antibody ipilimumab in patients with metastatic melanoma after prior anti-PD-1 therapy. British Journal of Cancer, 114(10), 1084–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gadgeel, S., Rodríguez-Abreu, D., Speranza, G., et al. (2020). Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non–small-cell lung cancer. Journal of Clinical Oncology, 38(14), 1505–1517.

    Article  CAS  PubMed  Google Scholar 

  142. West, H., McCleod, M., Hussein, M., et al. (2019). Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): A multicentre, randomised, open-label, phase 3 trial. The Lancet Oncology, 20(7), 924–937.

    Article  CAS  PubMed  Google Scholar 

  143. Paz-Ares, L., Luft, A., Vicente, D., et al. (2018). Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. The New England Journal of Medicine, 379(21), 2040–2051.

    Article  CAS  PubMed  Google Scholar 

  144. Gandhi, L., Rodriguez-Abreu, D., Gadgeel, S., et al. (2018). Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. The New England Journal of Medicine, 378(22), 2078–2092.

    Article  CAS  PubMed  Google Scholar 

  145. Gutzmer, R., Stroyakovskiy, D., Gogas, H., et al. (2020). Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): Primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet, 395(10240), 1835–1844.

    Article  CAS  Google Scholar 

  146. Oxnard, G. R., Yang, J. C., Yu, H., et al. (2020). TATTON: A multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 31(4), 507–516.

    Article  CAS  Google Scholar 

  147. Schoenfeld, A. J., Arbour, K. C., Rizvi, H., et al. (2019). Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 30(5), 839–844.

    Article  CAS  Google Scholar 

  148. Balagani, A., Arain, M. H., & Sheshadri, A. (2020). Bronchiolitis obliterans after combination immunotherapy with pembrolizumab and ipilimumab. Journal of Immunotherapy and Precision Oncology, 1(1), 49–52.

    Article  Google Scholar 

  149. Kolla, B. C., & Patel, M. R. (2016). Recurrent pleural effusions and cardiac tamponade as possible manifestations of pseudoprogression associated with nivolumab therapy – A report of two cases. Journal for Immunotherapy of Cancer, 4, 80.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Bronstein, Y., Ng, C. S., Hwu, P., & Hwu, W. J. (2011). Radiologic manifestations of immune-related adverse events in patients with metastatic melanoma undergoing anti-CTLA-4 antibody therapy. AJR. American Journal of Roentgenology, 197(6), W992–w1000.

    Article  PubMed  Google Scholar 

  151. Tetzlaff, M. T., Nelson, K. C., Diab, A., et al. (2018). Granulomatous/sarcoid-like lesions associated with checkpoint inhibitors: A marker of therapy response in a subset of melanoma patients. Journal for Immunotherapy of Cancer, 6(1), 14.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ramstein, J., Broos, C. E., Simpson, L. J., et al. (2016). IFN-γ-producing T-helper 17.1 cells are increased in sarcoidosis and are more prevalent than T-helper type 1 cells. American Journal of Respiratory and Critical Care Medicine, 193(11), 1281–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Facco, M., Cabrelle, A., Teramo, A., et al. (2011). Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax, 66(2), 144–150.

    Article  PubMed  Google Scholar 

  154. von Euw, E., Chodon, T., Attar, N., et al. (2009). CTLA4 blockade increases Th17 cells in patients with metastatic melanoma. Journal of Translational Medicine, 7, 35.

    Article  CAS  Google Scholar 

  155. Attia, P., Phan, G. Q., Maker, A. V., et al. (2005). Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. Journal of Clinical Oncology, 23(25), 6043–6053.

    Article  CAS  PubMed  Google Scholar 

  156. Horvat, T. Z., Adel, N. G., Dang TO, et al. (2015). Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. Journal of Clinical Oncology, 33(28), 3193–3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Santini, F. C., Rizvi, H., Plodkowski, A. J., et al. (2018). Safety and efficacy of re-treating with immunotherapy after immune-related adverse events in patients with NSCLC. Cancer Immunology Research, 6(9), 1093–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pollack, M. H., Betof, A., Dearden, H., et al. (2018). Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 29(1), 250–255.

    Article  CAS  Google Scholar 

  159. Cunliffe, A., Armato, S. G., 3rd, Castillo, R., Pham, N., Guerrero, T., & Al-Hallaq, H. A. (2015). Lung texture in serial thoracic computed tomography scans: Correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. International Journal of Radiation Oncology, Biology, Physics, 91(5), 1048–1056.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Colen, R. R., Fujii, T., Bilen, M. A., et al. (2018). Radiomics to predict immunotherapy-induced pneumonitis: Proof of concept. Investigational New Drugs, 36(4), 601–607.

    Article  CAS  PubMed  Google Scholar 

  161. Mendoza, T. R. (2020). New developments in the use of patient-reported outcomes in cancer patients undergoing immunotherapies. In A. Naing & J. Hajjar (Eds.), Immunotherapy (pp. 335–339). Springer International Publishing.

    Chapter  Google Scholar 

  162. Abraham, C., & Cho, J. (2009). Interleukin-23/Th17 pathways and inflammatory bowel disease. Inflammatory Bowel Diseases, 15(7), 1090–1100.

    Article  PubMed  Google Scholar 

  163. Tarhini, A. A., Zahoor, H., Lin, Y., et al. (2015). Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. Journal for Immunotherapy of Cancer, 3, 39.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kim, S., Shannon, V., Sheshadri, A., et al. (2018). TH1/17 hybrid CD4+ cells in bronchial alveolar lavage fluid from leukemia patients with checkpoint inhibitor-induced pneumonitis. Journal of Clinical Oncology, 36(5_suppl), 204–204.

    Article  Google Scholar 

  165. Kim, S. T., Sheshadri, A., Shannon, V., et al. (2020). Distinct Immunophenotypes of T cells in bronchoalveolar lavage fluid from leukemia patients with immune checkpoint inhibitors-related pulmonary complications. Frontiers in Immunology, 11, 590494.

    Article  CAS  PubMed  Google Scholar 

  166. Gianchecchi, E., & Fierabracci, A. (2018). Inhibitory receptors and pathways of lymphocytes: The role of PD-1 in Treg development and their involvement in autoimmunity onset and cancer progression. Frontiers in Immunology, 9, 2374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Naing, A., Hajjar, J., Gulley, J. L., et al. (2020). Strategies for improving the management of immune-related adverse events. Journal for Immunotherapy of Cancer, 8(2).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Altan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Altan, M., Zhong, L., Shannon, V.R., Sheshadri, A. (2021). Pulmonary Toxicities of Immunotherapy. In: Naing, A., Hajjar, J. (eds) Immunotherapy. Advances in Experimental Medicine and Biology, vol 1342. Springer, Cham. https://doi.org/10.1007/978-3-030-79308-1_14

Download citation

Publish with us

Policies and ethics