Skip to main content

Ancillary Studies for Serous Fluids

  • Chapter
  • First Online:
The International System for Serous Fluid Cytopathology

Abstract

Spread of malignancies to serous cavities represents advanced stage disease that necessitates systemic treatment. Immunochemistry (IC) is an indispensable tool to ascertain malignancy in equivocal cases and to define the histological subtype or primary site of a metastatic tumor. This chapter focuses on the technical aspects of marker testing, molecular methods, and on predictive biomarkers that guide diagnosis and treatment of serous fluid diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lindeman NI, Cagle PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Thorac Oncol. 2018;13(3):323–58.

    Article  CAS  Google Scholar 

  2. Cheung CC, Barnes P, Bigras G, et al. Canadian Association of Pathologists-Association Canadienne Des Pathologistes' National Standards Committee for high complexity, fit-for-purpose PD-L1 biomarker testing for patient selection in immuno-oncology: guidelines for clinical laboratories from the Canadian Association of Pathologists-Association Canadienne Des Pathologistes (CAP-ACP). Appl Immunohistochem Mol Morphol. 2019;27(10):699–714.

    Article  Google Scholar 

  3. Torlakovic EE, Nielsen S, Francis G, et al. Standardization of positive controls in diagnostic immunohistochemistry: recommendations from the International Ad Hoc Expert Committee. Appl Immunohistochem Mol Morphol. 2015;23(1):1–18.

    Article  CAS  Google Scholar 

  4. Engels M, Michael C, Dobra K, Hjerpe A, Fassina A, Firat P. Management of cytological material, pre-analytical procedures and bio-banking in effusion cytopathology. Cytopathology. 2019;30(1):31–8.

    Article  Google Scholar 

  5. Jain D, Nambirajan A, Borczuk A, et al. Immunocytochemistry for predictive biomarker testing in lung cancer cytology. Cancer Cytopathol. 2019;127(5):325–39.

    Article  CAS  Google Scholar 

  6. Savic Prince S, Bubendorf L. Predictive potential and need for standardization of PD-L1 immunohistochemistry. Virchows Arch. 2019;474(4):475–84.

    Article  CAS  Google Scholar 

  7. Hirsch FR, McElhinny A, Stanforth D, et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 2017;12(2):208–22.

    Article  Google Scholar 

  8. Savic S, Berezowska S, Eppenberger-Castori S, et al. PD-L1 testing of non-small cell lung cancer using different antibodies and platforms: a Swiss cross-validation study. Virchows Arch. 2019;475(1):67–76.

    Article  CAS  Google Scholar 

  9. Tsao MS, Kerr KM, Kockx M, et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thorac Oncol. 2018;13(9):1302–11.

    Article  Google Scholar 

  10. Wang G, Ionescu DN, Lee CH, et al. PD-L1 testing on the EBUS-FNA cytology specimens of non-small cell lung cancer. Lung Cancer. 2019;136:1–5.

    Article  Google Scholar 

  11. Torous VF, Rangachari D, Gallant BP, Shea M, Costa DB, VanderLaan PA. PD-L1 testing using the clone 22C3 pharmDx kit for selection of patients with non-small cell lung cancer to receive immune checkpoint inhibitor therapy: are cytology cell blocks a viable option? J Am Soc Cytopathol. 2018;7(3):133–41.

    Article  Google Scholar 

  12. Heymann JJ, Bulman WA, Swinarski D, et al. PD-L1 expression in non-small cell lung carcinoma: comparison among cytology, small biopsy, and surgical resection specimens. Cancer Cytopathol. 2017;125(12):896–907.

    Article  CAS  Google Scholar 

  13. Munari E, Zamboni G, Sighele G, et al. Expression of programmed cell death ligand 1 in non-small cell lung cancer: comparison between cytologic smears, core biopsies, and whole sections using the SP263 assay. Cancer Cytopathol. 2019;127(1):52–61.

    Article  CAS  Google Scholar 

  14. Bubendorf L, Lantuejoul S, de Langen AJ, Thunnissen E. Nonsmall cell lung carcinoma: diagnostic difficulties in small biopsies and cytological specimens: number 2 in the series “pathology for the clinician” edited by Peter Dorfmuller and Alberto Cavazza. Eur Respir Rev. 2017;26(144):170007.

    Google Scholar 

  15. Xu J, Han X, Liu C, et al. PD-L1 expression in pleural effusions of pulmonary adenocarcinoma and survival prediction: a controlled study by pleural biopsy. Sci Rep. 2018;8(1):11206.

    Article  CAS  Google Scholar 

  16. Jain D, Sukumar S, Mohan A, Iyer VK. Programmed death-ligand 1 immunoexpression in matched biopsy and liquid-based cytology samples of advanced stage non-small cell lung carcinomas. Cytopathology. 2018;29(6):550–7.

    Article  Google Scholar 

  17. Mian I, Abdullaev Z, Morrow B, et al. Anaplastic lymphoma kinase gene rearrangement in children and young adults with mesothelioma. J Thorac Oncol. 2020;15(3):457–61.

    Article  CAS  Google Scholar 

  18. Hung YP, Dong F, Watkins JC, et al. Identification of ALK rearrangements in malignant peritoneal mesothelioma. JAMA Oncol. 2018;4(2):235–8.

    Article  Google Scholar 

  19. Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703.

    Article  CAS  Google Scholar 

  20. Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017;377(9):829–38.

    Article  CAS  Google Scholar 

  21. Pekar-Zlotin M, Hirsch FR, Soussan-Gutman L, et al. Fluorescence in situ hybridization, immunohistochemistry, and next-generation sequencing for detection of EML4-ALK rearrangement in lung cancer. Oncologist. 2015;20(3):316–22.

    Article  Google Scholar 

  22. Savic S, Diebold J, Zimmermann AK, et al. Screening for ALK in non-small cell lung carcinomas: 5A4 and D5F3 antibodies perform equally well, but combined use with FISH is recommended. Lung Cancer. 2015;89(2):104–9.

    Article  Google Scholar 

  23. Zhang C, Randolph ML, Jones KJ, Cramer HM, Cheng L, Wu HH. Anaplastic lymphoma kinase immunocytochemistry on cell-transferred cytologic smears of lung adenocarcinoma. Acta Cytol. 2015;59(2):213–8.

    Article  CAS  Google Scholar 

  24. Liu L, Zhan P, Zhou X, Song Y, Zhou X, Yu L, Wang J. Detection of EML4-ALK in lung adenocarcinoma using pleural effusion with FISH, IHC, and RT-PCR methods. PLoS One. 2015;10(3):e0117032.

    Article  CAS  Google Scholar 

  25. Zhou J, Yao H, Zhao J, et al. Cell block samples from malignant pleural effusion might be valid alternative samples for anaplastic lymphoma kinase detection in patients with advanced non-small-cell lung cancer. Histopathology. 2015;66(7):949–54.

    Article  Google Scholar 

  26. Fiset PO, Labbe C, Young K, et al. Anaplastic lymphoma kinase 5A4 immunohistochemistry as a diagnostic assay in lung cancer: a Canadian reference testing center's results in population-based reflex testing. Cancer. 2019;125(22):4043–51.

    Article  CAS  Google Scholar 

  27. Wang Z, Wu X, Han H, et al. ALK gene expression status in pleural effusion predicts tumor responsiveness to crizotinib in Chinese patients with lung adenocarcinoma. Chin J Cancer Res. 2016;28(6):606–16.

    Article  Google Scholar 

  28. Wang W, Tang Y, Li J, Jiang L, Jiang Y, Su X. Detection of ALK rearrangements in malignant pleural effusion cell blocks from patients with advanced non-small cell lung cancer: a comparison of Ventana immunohistochemistry and fluorescence in situ hybridization. Cancer Cytopathol. 2015;123(2):117–22.

    Article  CAS  Google Scholar 

  29. Sholl LM, Sun H, Butaney M, et al. ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am J Surg Pathol. 2013;37(9):1441–9.

    Article  Google Scholar 

  30. Davies KD, Le AT, Theodoro MF, et al. Identifying and targeting ROS1 gene fusions in non-small cell lung cancer. Clin Cancer Res. 2012;18(17):4570–9.

    Article  CAS  Google Scholar 

  31. Lozano MD, Echeveste JI, Abengozar M, et al. Cytology smears in the era of molecular biomarkers in non-small cell lung cancer: doing more with less. Arch Pathol Lab Med. 2018;142(3):291–8.

    Article  CAS  Google Scholar 

  32. Bubendorf L, Buttner R, Al-Dayel F, et al. Testing for ROS1 in non-small cell lung cancer: a review with recommendations. Virchows Arch. 2016;469(5):489–503.

    Article  CAS  Google Scholar 

  33. Shan L, Lian F, Guo L, et al. Detection of ROS1 gene rearrangement in lung adenocarcinoma: comparison of IHC, FISH and real-time RT-PCR. PLoS One. 2015;10(3):e0120422.

    Article  CAS  Google Scholar 

  34. Yoshida A, Tsuta K, Wakai S, et al. Immunohistochemical detection of ROS1 is useful for identifying ROS1 rearrangements in lung cancers. Mod Pathol. 2014;27(5):711–20.

    Article  CAS  Google Scholar 

  35. Vlajnic T, Savic S, Barascud A, et al. Detection of ROS1-positive non-small cell lung cancer on cytological specimens using immunocytochemistry. Cancer Cytopathol. 2018;126(6):421–9.

    Article  CAS  Google Scholar 

  36. Huang RSP, Smith D, Le CH, et al. Correlation of ROS1 immunohistochemistry with ROS1 fusion status determined by fluorescence in situ hybridization. Arch Pathol Lab Med. 2019; https://doi.org/10.5858/arpa.2019-0085-OA.

  37. Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15(12):731–47.

    Article  CAS  Google Scholar 

  38. Pietrantonio F, Di Nicolantonio F, Schrock AB, et al. ALK, ROS1, and NTRK rearrangements in metastatic colorectal cancer. J Nat Cancer Instit. 2017;109(12) https://doi.org/10.1093/jnci/djx089.

  39. Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731–9.

    Article  CAS  Google Scholar 

  40. Hechtman JF, Benayed R, Hyman DM, et al. Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am J Surg Pathol. 2017;41(11):1547–51.

    Article  Google Scholar 

  41. Bourhis A, Redoulez G, Quintin-Roue I, Marcorelles P, Uguen A. Screening for NTRK-rearranged tumors using immunohistochemistry: comparison of 2 different pan-TRK clones in melanoma samples. Appl Immunohistochem Mol Morphol. 2020;28(3):194–6.

    Article  CAS  Google Scholar 

  42. Gatalica Z, Xiu J, Swensen J, Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol. 2019;32(1):147–53.

    Article  CAS  Google Scholar 

  43. Bahreini F, Soltanian AR, Mehdipour P. A meta-analysis on concordance between immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) to detect HER2 gene overexpression in breast cancer. Breast Cancer. 2015;22(6):615–25.

    Article  Google Scholar 

  44. Wolff AC, Hammond MEH, Allison KH, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. J Clin Oncol. 2018;36(20):2105–22.

    Article  CAS  Google Scholar 

  45. Bartley AN, Washington MK, Colasacco C, et al. HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: guideline from the College of American Pathologists, American Society for Clinical Pathology, and the American Society of Clinical Oncology. J Clin Oncol. 2017;35(4):446–64.

    Article  CAS  Google Scholar 

  46. Shabaik A, Lin G, Peterson M, et al. Reliability of Her2/neu, estrogen receptor, and progesterone receptor testing by immunohistochemistry on cell block of FNA and serous effusions from patients with primary and metastatic breast carcinoma. Diagn Cytopathol. 2011;39(5):328–32.

    Article  Google Scholar 

  47. Wolff AC, Hammond MEH, Allison A, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical practice guideline focused update. Arch Pathol Lab Med. 2018;142(11):1364–82.

    Article  Google Scholar 

  48. Pareja F, Murray MP, Jean RD, et al. Cytologic assessment of estrogen receptor, progesterone receptor, and HER2 status in metastatic breast carcinoma. J Am Soc Cytopathol. 2017;6(1):33–40.

    Article  Google Scholar 

  49. Srebotnik Kirbis I, Us Krasovec M, Pogacnik A, Strojan FM. Optimization and validation of immunocytochemical detection of oestrogen receptors on cytospins prepared from fine needle aspiration (FNA) samples of breast cancer. Cytopathology. 2015;26(2):88–98.

    Article  CAS  Google Scholar 

  50. Pu RT, Giordano TJ, Michael CW. Utility of cytology microarray constructed from effusion cell blocks for immunomarker validation. Cancer. 2008;114(5):300–6.

    Article  Google Scholar 

  51. Mossler JA, McCarty KS Jr, Johnston WW. The correlation of cytologic grade and steroid receptor content in effusions of metastatic breast carcinoma. Acta Cytol. 1981;25(6):653–8.

    CAS  Google Scholar 

  52. Zhao P, Li L, Jiang X, Li Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J Hematol Oncol. 2019;12(1):54.

    Article  Google Scholar 

  53. Chang L, Chang M, Chang HM, Chang F. Microsatellite instability: a predictive biomarker for cancer immunotherapy. Appl Immunohistochem Mol Morphol. 2018;26(2):e15–21.

    CAS  Google Scholar 

  54. Luchini C, Bibeau F, Ligtenberg MJL, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol. 2019;30(8):1232–43.

    Article  CAS  Google Scholar 

  55. Longacre TA, Broaddus R, Chuang LT, et al. for the C.o.A.P. members of the Cancer Biomarker Reporting Committee. Template for reporting results of biomarker testing of specimens from patients with carcinoma of the endometrium. Arch Pathol Lab Med. 2017;141(11):1508–12.

    Article  Google Scholar 

  56. Bartley AN, Hamilton SR, Alsabeh R, et al. for the C.o.A.P. members of the Cancer Biomarker Reporting Workgroup. Template for reporting results of biomarker testing of specimens from patients with carcinoma of the colon and rectum. Arch Pathol Lab Med. 2014;138(2):166–70.

    Article  Google Scholar 

  57. Okamura R, Kato S, Lee S, Jimenez RE, Sicklick JK, Kurzrock R. ARID1A alterations function as a biomarker for longer progression-free survival after anti-PD-1/PD-L1 immunotherapy. J Immunother Cancer. 2020;8(1) https://doi.org/10.1136/jitc-2019-000438.

  58. Hu G, Tu W, Yang L, Peng G, Yang L. ARID1A deficiency and immune checkpoint blockade therapy: from mechanisms to clinical application. Cancer Lett. 2020;473:148–55.

    Article  CAS  Google Scholar 

  59. Shen J, Ju Z, Zhao W, et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med. 2018;24(5):556–62.

    Article  CAS  Google Scholar 

  60. Sasaki M, Chiwaki F, Kuroda T, et al. Efficacy of glutathione inhibitors for the treatment of ARID1A-deficient diffuse-type gastric cancers. Biochem Biophys Res Commun. 2020;522(2):342–7.

    Article  CAS  Google Scholar 

  61. Khalique S, Naidoo K, Attygalle AD, et al. Optimised ARID1A immunohistochemistry is an accurate predictor of ARID1A mutational status in gynaecological cancers. J Pathol Clin Res. 2018;4(3):154–66.

    Article  CAS  Google Scholar 

  62. Dugas SG, Muller DC, Le Magnen C, et al. Immunocytochemistry for ARID1A as a potential biomarker in urine cytology of bladder cancer. Cancer Cytopathol. 2019;127(9):578–85.

    Article  CAS  Google Scholar 

  63. Yu XM, Wang XF. The in vitro proliferation and cytokine production of Valpha24+Vbeta11+ natural killer T cells in patients with systemic lupus erythematosus. Chin Med J. 2011;124(1):61–5.

    CAS  Google Scholar 

  64. Nambirajan A, Jain D. Cell blocks in cytopathology: an update. Cytopathology. 2018;29(6):505–24.

    Article  Google Scholar 

  65. Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 2002;161(6):1961–71.

    Article  CAS  Google Scholar 

  66. Vlajnic T, Somaini G, Savic S, et al. Targeted multiprobe fluorescence in situ hybridization analysis for elucidation of inconclusive pancreatobiliary cytology. Cancer Cytopathol. 2014;122(8):627–34.

    Article  Google Scholar 

  67. Wilkens L, Gerr H, Gadzicki D, Kreipe H, Schlegelberger B. Standardised fluorescence in situ hybridisation in cytological and histological specimens. Virchows Arch. 2005;447(3):586–92.

    Article  CAS  Google Scholar 

  68. Bubendorf L, Grilli B. UroVysion multiprobe FISH in urinary cytology. Methods Mol Med. 2004;97:117–31.

    CAS  Google Scholar 

  69. Siddiqui MT, Schmitt F, Churg A. Proceedings of the American Society of Cytopathology companion session at the 2019 United States and Canadian Academy of Pathology Annual meeting, part 2: effusion cytology with focus on theranostics and diagnosis of malignant mesothelioma. J Am Soc Cytopathol. 2019;8(6):352–61.

    Article  Google Scholar 

  70. Whitaker D. The cytology of malignant mesothelioma. Cytopathology. 2000;11(3):139–51.

    Article  CAS  Google Scholar 

  71. Husain AN, Colby TV, Ordonez NG, et al. Guidelines for pathologic diagnosis of malignant mesothelioma 2017 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2018;142(1):89–108.

    Article  CAS  Google Scholar 

  72. Cigognetti M, Lonardi S, Fisogni S, et al. BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Mod Pathol. 2015;28(8):1043–57.

    Article  CAS  Google Scholar 

  73. Chiosea S, Krasinskas A, Cagle PT, Mitchell KA, Zander DS, Dacic S. Diagnostic importance of 9p21 homozygous deletion in malignant mesotheliomas. Mod Pathol. 2008;21(6):742–7.

    Article  CAS  Google Scholar 

  74. Savic S, Franco N, Grilli B, et al. Fluorescence in situ hybridization in the definitive diagnosis of malignant mesothelioma in effusion cytology. Chest. 2010;138(1):137–44.

    Article  CAS  Google Scholar 

  75. Savic S, Bubendorf L. Common fluorescence in situ hybridization applications in cytology. Arch Pathol Lab Med. 2016;140(12):1323–30.

    Article  Google Scholar 

  76. Berg KB, Dacic S, Miller C, Cheung S, Churg A. Utility of methylthioadenosine phosphorylase compared with BAP1 immunohistochemistry, and CDKN2A and NF2 fluorescence in situ hybridization in separating reactive mesothelial proliferations from epithelioid malignant mesotheliomas. Arch Pathol Lab Med. 2018;142(12):1549–53.

    Article  CAS  Google Scholar 

  77. Churg A, Galateau-Salle F, Roden AC, et al. Malignant mesothelioma in situ: morphologic features and clinical outcome. Mod Pathol. 2020;33(2):297–302.

    Article  CAS  Google Scholar 

  78. Berg KB, Churg AM, Cheung S, Dacic S. Usefulness of methylthioadenosine phosphorylase and BRCA-associated protein 1 immunohistochemistry in the diagnosis of malignant mesothelioma in effusion cytology specimens. Cancer Cytopathol. 2020;128(2):126–32.

    Article  CAS  Google Scholar 

  79. Patel T, Patel P, Mehta S, Shah M, Jetly D, Khanna N. The value of cytology in diagnosis of serous effusions in malignant lymphomas: an experience of a tertiary care center. Diagn Cytopathol. 2019;47(8):776–82.

    Google Scholar 

  80. Rolfo C. NTRK gene fusions: a rough diamond ready to sparkle. Lancet Oncol. 2020;21(4):472–4.

    Article  CAS  Google Scholar 

  81. Li AY, McCusker MG, Russo A, et al. RET fusions in solid tumors. Cancer Treat Rev. 2019;81:101911.

    Article  CAS  Google Scholar 

  82. Schram AM, Chang MT, Jonsson P, Drilon A. Fusions in solid tumours: diagnostic strategies, targeted therapy, and acquired resistance. Nat Rev Clin Oncol. 2017;14(12):735–48.

    Article  CAS  Google Scholar 

  83. Savic S, Bubendorf L. Role of fluorescence in situ hybridization in lung cancer cytology. Acta Cytol. 2012;56(6):611–21.

    Article  CAS  Google Scholar 

  84. Meric-Bernstam F, Johnson AM, Dumbrava EEI, et al. Advances in HER2-targeted therapy: novel agents and opportunities beyond breast and gastric cancer. Clin Cancer Res. 2019;25(7):2033–41.

    Article  CAS  Google Scholar 

  85. Oh DY, Bang YJ. HER2-targeted therapies - a role beyond breast cancer. Nat Rev Clin Oncol. 2020;17(1):33–48.

    Article  CAS  Google Scholar 

  86. Tapia C, Savic S, Wagner U, et al. HER2 gene status in primary breast cancers and matched distant metastases. Breast Cancer Res. 2007;9(3):R31.

    Article  CAS  Google Scholar 

  87. Edelweiss M, Sebastiao APM, Oen H, Kracun M, Serrette R, Ross DS. HER2 assessment by bright-field dual in situ hybridization in cell blocks of recurrent and metastatic breast carcinoma. Cancer Cytopathol. 2019;127(11):684–90.

    Article  CAS  Google Scholar 

  88. Camidge DR, Davies KD. MET copy number as a secondary driver of epidermal growth factor receptor tyrosine kinase inhibitor resistance in EGFR-mutant non-small-cell lung cancer. J Clin Oncol. 2019;37(11):855–7.

    Article  Google Scholar 

  89. Song Z, Wang H, Yu Z, et al. De novo MET amplification in Chinese patients with non-small-cell lung cancer and treatment efficacy with crizotinib: a multicenter retrospective study. Clin Lung Cancer. 2019;20(2):e171–6.

    Article  CAS  Google Scholar 

  90. Mignard X, Ruppert AM, Antoine M, et al. c-MET overexpression as a poor predictor of MET amplifications or exon 14 mutations in lung sarcomatoid carcinomas. J Thorac Oncol. 2018;13(12):1962–7.

    Article  CAS  Google Scholar 

  91. Corcoran JP, Psallidas I, Wrightson JM, Hallifax RJ, Rahman NM. Pleural procedural complications: prevention and management. J Thorac Dis. 2015;7(6):1058–67.

    Google Scholar 

  92. Antony VB, Loddenkemper R, Astoul P, et al. Management of malignant pleural effusions. Eur Respir J. 2001;18(2):402–19.

    Article  CAS  Google Scholar 

  93. Detterbeck FC. The eighth edition TNM stage classification for lung cancer: what does it mean on main street? J Thorac Cardiovasc Surg. 2018;155(1):356–9.

    Article  Google Scholar 

  94. Han HS, Eom DW, Kim JH, et al. EGFR mutation status in primary lung adenocarcinomas and corresponding metastatic lesions: discordance in pleural metastases. Clin Lung Cancer. 2011;12(6):380–6.

    Article  CAS  Google Scholar 

  95. Ettinger DS, Aisner DL, Wood DE, et al. NCCN guidelines insights: non-small cell lung cancer, version 5.2018. J Natl Compr Cancer Netw. 2018;16(7):807–21.

    Article  Google Scholar 

  96. Kalemkerian GP, Narula N, Kennedy EB, et al. Molecular testing guideline for the selection of patients with lung cancer for treatment with targeted tyrosine kinase inhibitors: American Society of Clinical Oncology endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology clinical practice guideline update. J Clin Oncol. 2018;36(9):911–9.

    Article  CAS  Google Scholar 

  97. Lindeman NI, Cagle PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018;142(3):321–46.

    Article  CAS  Google Scholar 

  98. Huang MJ, Lim KH, Tzen CY, Hsu HS, Yen Y, Huang BS. EGFR mutations in malignant pleural effusion of non-small cell lung cancer: a case report. Lung Cancer. 2005;49(3):413–5.

    Article  Google Scholar 

  99. Liu L, Shao D, Deng Q, et al. Next generation sequencing-based molecular profiling of lung adenocarcinoma using pleural effusion specimens. J Thorac Dis. 2018;10(5):2631–7.

    Article  Google Scholar 

  100. Gupta V, Shukla S, Husain N, Kant S, Garg R. A comparative study of cell block versus biopsy for detection of epidermal growth factor receptor mutations and anaplastic lymphoma kinase rearrangement in adenocarcinoma lung. J Cytol. 2019;36(1):13–7.

    Article  Google Scholar 

  101. Malapelle U, Bellevicine C, De Luca C, et al. EGFR mutations detected on cytology samples by a centralized laboratory reliably predict response to gefitinib in non-small cell lung carcinoma patients. Cancer Cytopathol. 2013;121:552–60.

    Article  CAS  Google Scholar 

  102. Jiang SX, Yamashita K, Yamamoto M, et al. EGFR genetic heterogeneity of nonsmall cell lung cancers contributing to acquired gefitinib resistance. Int J Cancer. 2008;123(11):2480–6.

    Article  CAS  Google Scholar 

  103. Savic S, Tapia C, Grilli B, et al. Comprehensive epidermal growth factor receptor gene analysis from cytological specimens of non-small-cell lung cancers. Br J Cancer. 2008;98(1):154–60.

    Article  CAS  Google Scholar 

  104. Ellison G, Zhu G, Moulis A, Dearden S, Speake G, McCormack R. EGFR mutation testing in lung cancer: a review of available methods and their use for analysis of tumour tissue and cytology samples. J Clin Pathol. 2013;66(2):79–89.

    Article  CAS  Google Scholar 

  105. Tang Y, Wang Z, Li Z, et al. High-throughput screening of rare metabolically active tumor cells in pleural effusion and peripheral blood of lung cancer patients. Proc Natl Acad Sci U S A. 2017;114(10):2544–9.

    Article  CAS  Google Scholar 

  106. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7.

    Article  CAS  Google Scholar 

  107. Beck TF, Mullikin JC, NISC Comparative Sequencing Program, Biesecker LG. Systematic evaluation of Sanger validation of next-generation sequencing variants. Clin Chem. 2016;62(4):647–54.

    Article  CAS  Google Scholar 

  108. Kimura H, Fujiwara Y, Sone T, et al. EGFR mutation status in tumour-derived DNA from pleural effusion fluid is a practical basis for predicting the response to gefitinib. Br J Cancer. 2006;95(10):1390–5.

    Article  CAS  Google Scholar 

  109. Zhang X, Zhao Y, Wang M, Yap WS, Chang AY. Detection and comparison of epidermal growth factor receptor mutations in cells and fluid of malignant pleural effusion in non-small cell lung cancer. Lung Cancer. 2008;60(2):175–82.

    Article  Google Scholar 

  110. Kang JY, Park CK, Yeo CD, et al. Comparison of PNA clamping and direct sequencing for detecting KRAS mutations in matched tumour tissue, cell block, pleural effusion and serum from patients with malignant pleural effusion. Respirology. 2015;20(1):138–46.

    Article  Google Scholar 

  111. Chu H, Zhong C, Xue G, et al. Direct sequencing and amplification refractory mutation system for epidermal growth factor receptor mutations in patients with non-small cell lung cancer. Oncol Rep. 2013;30(5):2311–5.

    Article  CAS  Google Scholar 

  112. Vigliar E, Malapelle U, de Luca C, Bellevicine C, Troncone G. Challenges and opportunities of next-generation sequencing: a cytopathologist's perspective. Cytopathology. 2015;26(5):271–83.

    Article  CAS  Google Scholar 

  113. Rothberg JM, Hinz W, Rearick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.

    Article  CAS  Google Scholar 

  114. Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–9.

    Article  CAS  Google Scholar 

  115. Buttitta F, Felicioni L, Del Grammastro M, et al. Effective assessment of EGFR mutation status in bronchoalveolar lavage and pleural fluids by next-generation sequencing. Clin Cancer Res. 2013;19(3):691–8.

    Article  CAS  Google Scholar 

  116. Yang SR, Lin CY, Stehr H, et al. Comprehensive genomic profiling of malignant effusions in patients with metastatic lung adenocarcinoma. J Mol Diagn. 2018;20(2):184–94.

    Article  CAS  Google Scholar 

  117. Wang CG, Zeng DX, Huang JA, Jiang JH. Effective assessment of low times MET amplification in pleural effusion after epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) acquired resistance: cases report. Medicine (Baltimore). 2018;97(1):e9021.

    Article  Google Scholar 

  118. Sneddon S, Dick I, Lee YCG, et al. Malignant cells from pleural fluids in malignant mesothelioma patients reveal novel mutations. Lung Cancer. 2018;119(5):64–70.

    Article  Google Scholar 

  119. Roscilli G, De Vitis C, Ferrara FF, et al. Human lung adenocarcinoma cell cultures derived from malignant pleural effusions as model system to predict patients chemosensitivity. J Transl Med. 2016;14:61.

    Article  CAS  Google Scholar 

  120. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10(7):687–92.

    Article  CAS  Google Scholar 

  121. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–96.

    Article  CAS  Google Scholar 

  122. Merlo A, Herman JG, Mao L, et al. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1(7):686–92.

    Article  CAS  Google Scholar 

  123. Moran S, Martinez-Cardus A, Sayols S, et al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol. 2016;17(10):1386–95.

    Article  Google Scholar 

  124. Katayama H, Hiraki A, Aoe K, et al. Aberrant promoter methylation in pleural fluid DNA for diagnosis of malignant pleural effusion. Int J Cancer. 2007;120(10):2191–5.

    Article  CAS  Google Scholar 

  125. Botana-Rial M, De Chiara L, Valverde D, et al. Prognostic value of aberrant hypermethylation in pleural effusion of lung adenocarcinoma. Cancer Bio Ther. 2012;13(14):1436–42.

    Article  CAS  Google Scholar 

  126. Yang TM, Leu SW, Li JM, et al. WIF-1 promoter region hypermethylation as an adjuvant diagnostic marker for non-small cell lung cancer-related malignant pleural effusions. J Cancer Res Clin Oncol. 2009;135(7):919–24.

    Article  CAS  Google Scholar 

  127. Benlloch S, Galbis-Caravajal JM, Martin C, et al. Potential diagnostic value of methylation profile in pleural fluid and serum from cancer patients with pleural effusion. Cancer. 2006;107(8):1859–65.

    Article  CAS  Google Scholar 

  128. Brock MV, Hooker CM, Yung R, et al. Can we improve the cytologic examination of malignant pleural effusions using molecular analysis? Ann Thorac Surg. 2005;80(4):1241–7.

    Article  Google Scholar 

  129. Ilse P, Biesterfeld S, Pomjanski N, Fink C, Schramm M. SHOX2 DNA methylation is a tumour marker in pleural effusions. Cancer Genomics Proteomics. 2013;10(5):217–23.

    CAS  Google Scholar 

  130. Malapelle U, de Luca C, Vigliar E, et al. EGFR mutation detection on routine cytological smears of non-small cell lung cancer by digital PCR: a validation study. J Clin Pathol. 2016;69(5):454–7.

    Article  CAS  Google Scholar 

  131. Zhang BO, Xu CW, Shao Y, et al. Comparison of droplet digital PCR and conventional quantitative PCR for measuring EGFR gene mutation. Exp Ther Med. 2015;9(4):1383–8.

    Article  CAS  Google Scholar 

  132. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A. 1999;96(16):9236–41.

    Article  CAS  Google Scholar 

  133. Li X, Liu Y, Shi W, et al. Droplet digital PCR improved the EGFR mutation diagnosis with pleural fluid samples in non-small-cell lung cancer patients. Clin Chim Acta. 2017;471:177–84.

    Article  CAS  Google Scholar 

  134. Gu J, Zang W, Liu B, et al. Evaluation of digital PCR for detecting low-level EGFR mutations in advanced lung adenocarcinoma patients: a cross-platform comparison study. Oncotarget. 2017;8(40):67810–20.

    Article  Google Scholar 

  135. Rio DC. Reverse transcription-polymerase chain reaction, Cold Spring. Harb Protoc. 2014;2014(11):1207–16.

    Google Scholar 

  136. Schroeder A, Mueller O, Stocker S, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7(1):3.

    Article  CAS  Google Scholar 

  137. Tsai TH, Su KY, Wu SG, et al. RNA is favourable for analysing EGFR mutations in malignant pleural effusion of lung cancer. Eur Respir J. 2012;39(3):677–84.

    Article  CAS  Google Scholar 

  138. Soda M, Isobe K, Inoue A, et al. North-East Japan Study, ALKLCS Group. A prospective PCR-based screening for the EML4-ALK oncogene in non-small cell lung cancer. Clin Cancer Res. 2012;18(20):5682–9.

    Article  CAS  Google Scholar 

  139. Wu SG, Kuo YW, Chang YL, et al. EML4-ALK translocation predicts better outcome in lung adenocarcinoma patients with wild-type EGFR. J Thorac Oncol. 2012;7(1):98–104.

    Article  CAS  Google Scholar 

  140. Chen YL, Lee CT, Lu CC, et al. Epidermal growth factor receptor mutation and anaplastic lymphoma kinase gene fusion: detection in malignant pleural effusion by RNA or PNA analysis. PLoS One. 2016;11(6):e0158125.

    Article  CAS  Google Scholar 

  141. Tsai TH, Wu SG, Hsieh MS, Yu CJ, Yang JC, Shih JY. Clinical and prognostic implications of RET rearrangements in metastatic lung adenocarcinoma patients with malignant pleural effusion. Lung Cancer. 2015;88(2):208–14.

    Article  Google Scholar 

  142. Vaughn CP, Costa JL, Feilotter HE, et al. Simultaneous detection of lung fusions using a multiplex RT-PCR next generation sequencing-based approach: a multi-institutional research study. BMC Cancer. 2018;18(1):828.

    Article  CAS  Google Scholar 

  143. Ali G, Bruno R, Savino M, et al. Analysis of fusion genes by nanostring system: a role in lung cytology? Arch Pathol Lab Med. 2018;142(4):480–9.

    Article  CAS  Google Scholar 

  144. Nicole L, Cappello F, Cappellesso R, VandenBussche CJ, Fassina A. MicroRNA profiling in serous cavity specimens: diagnostic challenges and new opportunities. Cancer Cytopathol. 2019;127(8):493–500.

    Article  Google Scholar 

  145. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–33.

    Article  CAS  Google Scholar 

  146. Xie L, Wang T, Yu S, et al. Cell-free miR-24 and miR-30d, potential diagnostic biomarkers in malignant effusions. Clin Biochem. 2011;44(2–3):216–20.

    Article  CAS  Google Scholar 

  147. Xie L, Chen X, Wang L, et al. Cell-free miRNAs may indicate diagnosis and docetaxel sensitivity of tumor cells in malignant effusions. BMC Cancer. 2010;10:591.

    Article  CAS  Google Scholar 

  148. Shin YM, Yun J, Lee OJ, et al. Diagnostic value of circulating extracellular miR-134, miR-185, and miR-22 levels in lung adenocarcinoma-associated malignant pleural effusion. Cancer Res Treat. 2014;46(2):178–85.

    Article  CAS  Google Scholar 

  149. Han HS, Yun J, Lim SN, et al. Downregulation of cell-free miR-198 as a diagnostic biomarker for lung adenocarcinoma-associated malignant pleural effusion. Int J Cancer. 2013;133(3):645–52.

    Article  CAS  Google Scholar 

  150. Cappellesso R, Nicole L, Caroccia B, et al. MicroRNA-21/microRNA-126 profiling as a novel tool for the diagnosis of malignant mesothelioma in pleural effusion cytology. Cancer Cytopathol. 2016;124(1):28–37.

    Article  CAS  Google Scholar 

  151. Cappellesso R, Galasso M, Nicole L, Dabrilli P, Volinia S, Fassina A. miR-130A as a diagnostic marker to differentiate malignant mesothelioma from lung adenocarcinoma in pleural effusion cytology. Cancer Cytopathol. 2017;125(8):635–43.

    Article  CAS  Google Scholar 

  152. Lin J, Wang Y, Zou YQ, et al. Differential miRNA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia. Tumour Biol. 2016; https://doi.org/10.1007/s13277-016-5410-6.

  153. Hydbring P, De Petris L, Zhang Y, et al. Exosomal RNA-profiling of pleural effusions identifies adenocarcinoma patients through elevated miR-200 and LCN2 expression. Lung Cancer. 2018;124:45–52.

    Article  Google Scholar 

  154. Wang Y, Xu YM, Zou YQ, et al. Identification of differential expressed PE exosomal miRNA in lung adenocarcinoma, tuberculosis, and other benign lesions. Medicine (Baltimore). 2017;96(44):e8361.

    Article  CAS  Google Scholar 

  155. Tamiya H, Mitani A, Saito A, et al. Exosomal microRNA expression profiling in patients with lung adenocarcinoma-associated malignant pleural effusion. Anticancer Res. 2018;38(12):6707–14.

    Article  CAS  Google Scholar 

  156. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–48.

    Article  CAS  Google Scholar 

  157. Hummelink K, Muller M, Linders TM, et al. ERJ Open Res. 2019;5(1) https://doi.org/10.1183/23120541.00016-2019.

  158. Liu D, Lu Y, Hu Z, et al. Malignant pleural effusion supernatants are substitutes for metastatic pleural tumor tissues in EGFR mutation test in patients with advanced lung adenocarcinoma. PLoS One. 2014;9(2):e89946.

    Article  CAS  Google Scholar 

  159. Lin J, Gu Y, Du R, Deng M, Lu Y, Ding Y. Detection of EGFR mutation in supernatant, cell pellets of pleural effusion and tumor tissues from non-small cell lung cancer patients by high resolution melting analysis and sequencing. Int J Clin Exp Pathol. 2014;7(12):8813–22.

    Google Scholar 

  160. Kawahara A, Fukumitsu C, Azuma K, et al. A combined test using both cell sediment and supernatant cell-free DNA in pleural effusion shows increased sensitivity in detecting activating EGFR mutation in lung cancer patients. Cytopathology. 2018;29(2):150–5.

    Article  CAS  Google Scholar 

  161. Wu C, Mairinger F, Casanova R, Batavia AA, Leblond AL, Soltermann A. Prognostic immune cell profiling of malignant pleural effusion patients by computerized immunohistochemical and transcriptional analysis. Cancers (Basel). 2019;11(12) https://doi.org/10.3390/cancers11121953.

  162. Bubendorf L. Tissue microarrays meet cytopathology. Acta Cytol. 2006;50(2):121–2.

    Article  Google Scholar 

  163. Scott SN, Ostrovnaya I, Lin CM, et al. Next-generation sequencing of urine specimens: a novel platform for genomic analysis in patients with non-muscle-invasive urothelial carcinoma treated with bacille Calmette-Guerin. Cancer Cytopathol. 2017;125(6):416–26.

    Article  CAS  Google Scholar 

  164. Lorber T, Andor N, Dietsche T, et al. Exploring the spatiotemporal genetic heterogeneity in metastatic lung adenocarcinoma using a nuclei flow-sorting approach. J Pathol. 2019;247(2):199–213.

    Article  CAS  Google Scholar 

  165. Leichsenring J, Volckmar AL, Kirchner M, et al. Targeted deep sequencing of effusion cytology samples is feasible, informs spatiotemporal tumor evolution, and has clinical and diagnostic utility. Genes Chromosomes Cancer. 2018;57(2):70–9.

    Article  CAS  Google Scholar 

  166. Birkeland E, Zhang S, Poduval D, et al. Patterns of genomic evolution in advanced melanoma. Nat Commun. 2018;9(1):2665.

    Article  CAS  Google Scholar 

  167. Yates LR, Knappskog S, Wedge D, et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell. 2017;32(2):169–184 e7.

    Article  CAS  Google Scholar 

  168. Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol. 2019;12(1):134.

    Article  Google Scholar 

  169. Simonsohn U, Nelson LD, Simmons JP. P-curve won't do your laundry, but it will distinguish replicable from non-replicable findings in observational research: comment on Bruns & Ioannidis (2016). PLoS One. 2019;14(3):e0213454.

    Article  CAS  Google Scholar 

  170. Tseng YH, Ho HL, Lai CR, et al. PD-L1 expression of tumor cells, macrophages, and immune cells in non-small cell lung cancer patients with malignant pleural effusion. J Thorac Oncol. 2018;13(3):447–53.

    Article  CAS  Google Scholar 

  171. Francisco-Cruz A, Parra ER, Tetzlaff MT, Wistuba II. Multiplex immunofluorescence assays. Methods Mol Biol. 2020;2055:467–95.

    Article  CAS  Google Scholar 

  172. Goltsev Y, Samusik N, Kennedy-Darling J, et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell. 2018;174(4):968–981 e15.

    Article  CAS  Google Scholar 

  173. Vinayanuwattikun C, Prakhongcheep O, Tungsukruthai S, et al. Feasibility technique of low-passage in vitro drug sensitivity testing of malignant pleural effusion from advanced-stage non-small cell lung cancer for prediction of clinical outcome. Anticancer Res. 2019;39(12):6981–8.

    Article  CAS  Google Scholar 

  174. Ruiz C, Kustermann S, Pietilae E, et al. Culture and drug profiling of patient derived malignant pleural effusions for personalized cancer medicine. PLoS One. 2016;11(8):e0160807.

    Article  CAS  Google Scholar 

  175. Cailleau R, Mackay B, Young RK, Reeves WJ Jr. Tissue culture studies on pleural effusions from breast carcinoma patients. Cancer Res. 1974;34(4):801–9.

    CAS  Google Scholar 

  176. Artymovich K, Appledorn DM. A multiplexed method for kinetic measurements of apoptosis and proliferation using live-content imaging. Methods Mol Biol. 2015;1219:35–42.

    Article  CAS  Google Scholar 

  177. Liu X, Krawczyk E, Suprynowicz FA, et al. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nat Protoc. 2017;12(2):439–51.

    Article  CAS  Google Scholar 

  178. Palechor-Ceron N, Krawczyk E, Dakic A, et al. Conditional reprogramming for patient-derived cancer models and next-generation living biobanks. Cell. 2019;8(11) https://doi.org/10.3390/cells8111327.

  179. Jiang S, Wang J, Yang C, et al. Continuous culture of urine-derived bladder cancer cells for precision medicine. Protein Cell. 2019;10(12):902–7.

    Article  CAS  Google Scholar 

  180. Schutgens F, Clevers H. Human organoids: tools for understanding biology and treating diseases. Ann Rev Pathol. 2020;15:211–34.

    Article  CAS  Google Scholar 

  181. Bleijs M, van de Wetering M, Clevers H, Drost J. Xenograft and organoid model systems in cancer research. EMBO J. 2019;38(15):e101654.

    Article  CAS  Google Scholar 

  182. Tuveson D, Clevers H. Cancer modeling meets human organoid technology. Science. 2019;364(6444):952–5.

    Article  CAS  Google Scholar 

  183. Mazzocchi A, Devarasetty M, Herberg S, et al. Pleural effusion aspirate for use in 3D lung cancer modeling and chemotherapy screening. ACS Biomater Sci Eng. 2019;5(4):1937–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Bubendorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bubendorf, L. et al. (2020). Ancillary Studies for Serous Fluids. In: Chandra, A., Crothers, B., Kurtycz, D., Schmitt, F. (eds) The International System for Serous Fluid Cytopathology. Springer, Cham. https://doi.org/10.1007/978-3-030-53908-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53908-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53907-8

  • Online ISBN: 978-3-030-53908-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics