Skip to main content

Perioperative Optimization of Patient Nutritional Status

  • Chapter
  • First Online:
Enhanced Recovery After Surgery
  • 3096 Accesses

Abstract

Historically, nutritional disorders in surgical patients have been poorly recognized and managed, contributing to potentially avoidable sub-optimal postoperative outcomes. Enhanced recovery after surgery (ERAS) provides an ideal platform and context for quality improvement efforts aimed at addressing deficiencies in the management of perioperative nutrition.

In this chapter, we will review the definitions of relevant nutrition disorders that often occur before surgery and their pathophysiology, provide examples of nutritional screening instruments, and discuss a concise, pragmatic approach to optimizing the preoperative nutritional state. We will also focus on several disease states where specific perioperative nutritional strategies have shown promise, including hepatic resection, bariatric surgery, and Crohn’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Studley HO. Percentage of weight loss. JAMA. 1936;106(6):458–60.

    Article  Google Scholar 

  2. Fukuda Y, Yamamoto K, Hirao M, Nishikawa K, Maeda S, Haraguchi N, et al. Prevalence of malnutrition among gastric cancer patients undergoing gastrectomy and optimal preoperative nutritional support for preventing surgical site infections. Ann Surg Oncol. Springer US; 2015;22(3):S778–85.

    Google Scholar 

  3. Burden ST, Hill J, Shaffer JL, Todd C. Nutritional status of preoperative colorectal cancer patients. J Hum Nutr Diet. 2010;23(4):402–7.

    Article  CAS  Google Scholar 

  4. Williams JD, Wischmeyer PE. Assessment of perioperative nutrition practices and attitudes-A national survey of colorectal and GI surgical oncology programs. Am J Surg. 2017;213(6):1010–8.

    Article  CAS  Google Scholar 

  5. Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery: a review. JAMA Surg. American Medical Association; 2017;152(3):292–8.

    Google Scholar 

  6. Wischmeyer PE, Carli F, Evans DC, Guilbert S, Kozar R, Pryor A, et al. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on nutrition screening and therapy within a surgical enhanced recovery pathway. Anesth Analg. 2018;126(6):1883–95.

    Article  Google Scholar 

  7. Cederholm T, Barazzoni R, Austin P, Ballmer P, Biolo G, Bischoff SC, et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr. 2017;36:49–64.

    Article  CAS  Google Scholar 

  8. Jensen GL, Mirtallo J, Compher C, Dhaliwal R, Forbes A, Grijalba RF, et al. Adult starvation and disease-related malnutrition: a proposal for etiology-based diagnosis in the clinical practice setting from the International Consensus Guideline Committee. JPEN J Parenter Enteral Nutr. 2010;34(2):156–9.

    Article  Google Scholar 

  9. Streat S, Beddoe A, Hill G. Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. J Trauma. 1987;27(3):262–6.

    Article  CAS  Google Scholar 

  10. Lieffers JR, Bathe OF, Fassbender K, Winget M, Baracos VE. Sarcopenia is associated with postoperative infection and delayed recovery from colorectal cancer resection surgery. Br J Cancer. Nature Publishing Group; 2012;107(6):931–6.

    Google Scholar 

  11. Martin L, Hopkins J, Malietzis G, Jenkins JT, Sawyer MB, Brisebois R, et al. Assessment of computed tomography (CT)-defined muscle and adipose tissue features in relation to short-term outcomes after elective surgery for colorectal cancer: a multicenter approach. Ann Surg Oncol. Springer International Publishing; 2018;25(9):2669–80.

    Google Scholar 

  12. Pecorelli N, Capretti G, Sandini M, Damascelli A, Cristel G, De Cobelli F, et al. Impact of sarcopenic obesity on failure to rescue from major complications following pancreaticoduodenectomy for cancer: results from a multicenter study. Ann Surg Oncol. Springer International Publishing; 2018;25(1):308–17.

    Google Scholar 

  13. Nutrition support in adults: oral nutrition support, enteral tube feeding and parenteral nutrition. Vol. 32, NICE clinical guidelines no. 32. 2006 [cited 2014 Nov 19]. pp. 1–49. Available from: https://www.nice.org.uk/guidance/cg32.

  14. Kruizenga HM, Seidell JC, de Vet HCW, Wierdsma NJ, Van Bokhorst-de van der Schueren MAE. Development and validation of a hospital screening tool for malnutrition: the short nutritional assessment questionnaire (SNAQ). Clin Nutr. 2005;24(1):75–82.

    Article  CAS  Google Scholar 

  15. Baker JP, Detsky AS, Wesson DE, Wolman SL, Stewart S, Whitewell J, et al. Nutritional assessment: a comparison of clinical judgement and objective measurements. N Engl J Med. 1982;306(16):969–72.

    Article  CAS  Google Scholar 

  16. Smith G, Robinson PH, Fleck A. Serum albumin distribution in early treated anorexia nervosa. Nutrition. 1996;12(10):677–84.

    Article  CAS  Google Scholar 

  17. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23.

    Article  Google Scholar 

  18. Reisinger KW, van Vugt JLA, Tegels JJW, Snijders C, Hulsewé KWE, Hoofwijk AGM, et al. Functional compromise reflected by sarcopenia, frailty, and nutritional depletion predicts adverse postoperative outcome after colorectal cancer surgery. Ann Surg. 2015;261(2):345–52.

    Article  Google Scholar 

  19. Han-Geurts IJM, Hop WC, Tran TCK, Tilanus HW. Nutritional status as a risk factor in esophageal surgery. Dig Surg. Karger Publishers; 2006;23(3):159–63.

    Google Scholar 

  20. McWhirter JP, Pennington CR. Incidence and recognition of malnutrition in hospital. BMJ. 1994;308(6934):945–8.

    Article  CAS  Google Scholar 

  21. Ihle C, Freude T, Bahrs C, Zehendner E, Braunsberger J, Biesalski HK, et al. Malnutrition – an underestimated factor in the inpatient treatment of traumatology and orthopedic patients: a prospective evaluation of 1055 patients. Injury. 2017;48(3):628–36.

    Article  Google Scholar 

  22. Huang D-D, Wang S-L, Zhuang C-L, Zheng B-S, Lu J-X, Chen F-F, et al. Sarcopenia, as defined by low muscle mass, strength and physical performance, predicts complications after surgery for colorectal cancer. Color Dis. John Wiley & Sons, Ltd; 2015;17(11):O256–64.

    Google Scholar 

  23. Fukuda Y, Yamamoto K, Hirao M, Nishikawa K, Nagatsuma Y, Nakayama T, et al. Sarcopenia is associated with severe postoperative complications in elderly gastric cancer patients undergoing gastrectomy. Gastric Cancer. Springer Japan; 2016;19(3):986–93.

    Google Scholar 

  24. Huang D-D, Zhou C-J, Wang S-L, Mao S-T, Zhou X-Y, Lou N, et al. Impact of different sarcopenia stages on the postoperative outcomes after radical gastrectomy for gastric cancer. Surgery. 2017;161(3):680–93.

    Article  Google Scholar 

  25. Correia MI, Caiaffa WT, da Silva AL, Waitzberg DL. Risk factors for malnutrition in patients undergoing gastroenterological and hernia surgery: an analysis of 374 patients. Nutr Hosp. 2001;16(2):59–64.

    CAS  PubMed  Google Scholar 

  26. Kang CY, Halabi WJ, Chaudhry OO, Nguyen V, Pigazzi A, Carmichael JC, et al. Risk factors for anastomotic leakage after anterior resection for rectal cancer. JAMA Surg. American Medical Association; 2013;148(1):65–71.

    Google Scholar 

  27. Simonsen C, de Heer P, Bjerre ED, Suetta C, Hojman P, Pedersen BK, et al. Sarcopenia and postoperative complication risk in gastrointestinal surgical oncology: a meta-analysis. Ann Surg. 2018;268(1):58–69.

    Article  Google Scholar 

  28. Mei KL, Batsis JA, Mills JB, Holubar SD. Sarcopenia and sarcopenic obesity: do they predict inferior oncologic outcomes after gastrointestinal cancer surgery? Perioper Med (Lond). BioMed Central; 2016;5(1):30.

    Google Scholar 

  29. Klein S, Kinney J, Jeejeebhoy K, Alpers D, Hellerstein M, Murray M, et al. Nutrition support in clinical practice: review of published data and recommendations for future research directions. J Parenter Enter Nutr. 1997;21(3):133–56.

    Article  CAS  Google Scholar 

  30. Burden ST, Gibson DJ, Lal S, Hill J, Pilling M, Soop M, et al. Pre-operative oral nutritional supplementation with dietary advice versus dietary advice alone in weight-losing patients with colorectal cancer: single-blind randomized controlled trial. J Cachexia Sarcopenia Muscle. 2017;23(3):393–446.

    Google Scholar 

  31. Irving BA, Lanza IR, Henderson GC, Rao RR, Spiegelman BM, Nair KS. Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. J Clin Endocrinol Metab. 2015;100(4):1654–63.

    Article  CAS  Google Scholar 

  32. Gillis C, Li C, Lee L, Awasthi R, Augustin B, Gamsa A, et al. Prehabilitation versus rehabilitation: a randomized control trial in patients undergoing colorectal resection for cancer. Anesthesiology. 2014;121(5):937–47.

    Article  Google Scholar 

  33. Barberan-Garcia A, Ubré M, Roca J, Lacy AM, Burgos F, Risco R, et al. Personalised prehabilitation in high-risk patients undergoing elective major abdominal surgery: a randomized blinded controlled trial. Ann Surg. 2018;267(1):50–6.

    Article  Google Scholar 

  34. Reeves JG, Suriawinata AA, Ng DP, Holubar SD, Mills JB, Barth RJ. Short-term preoperative diet modification reduces steatosis and blood loss in patients undergoing liver resection. Surgery. 2013;154(5):1031–7.

    Article  Google Scholar 

  35. Barth RJ, Mills JB, Suriawinata AA, Putra J, Tosteson TD, Axelrod D, et al. Short-term preoperative diet decreases bleeding after partial hepatectomy: results from a multi-institutional randomized controlled trial. Ann Surg. 2019;269(1):48–52.

    Article  Google Scholar 

  36. Jongbloed F, de Bruin RWF, Klaassen RA, Beekhof P, van Steeg H, Dor FJMF, et al. Short-term preoperative calorie and protein restriction is feasible in healthy kidney donors and morbidly obese patients scheduled for surgery. Nutrients. 2016;8(5):306.

    Article  Google Scholar 

  37. Gade H, Friborg O, Rosenvinge JH, Småstuen MC, Hjelmesæth J. The impact of a preoperative cognitive behavioural therapy (CBT) on dysfunctional eating behaviours, affective symptoms and body weight 1 year after bariatric surgery: a randomised controlled trial. Obes Surg. Springer US; 2015;25(11):2112–9.

    Google Scholar 

  38. Probst P, Knebel P, Grummich K, Tenckhoff S, Ulrich A, Büchler MW, et al. Industry bias in randomized controlled trials in general and abdominal surgery: an empirical study. Ann Surg. 2016;264(1):87–92.

    Article  Google Scholar 

  39. Probst P, Ohmann S, Klaiber U, Hüttner FJ, Billeter AT, Ulrich A, et al. Meta-analysis of immunonutrition in major abdominal surgery. Br J Surg. Wiley-Blackwell; 2017;104(12):1594–608.

    Google Scholar 

  40. Weimann A, Braga M, Carli F, Higashiguchi T, Hübner M, Klek S, et al. ESPEN guideline: clinical nutrition in surgery. Clin Nutr. Elsevier Ltd; 2017;36(3):623–50.

    Google Scholar 

  41. Sandrucci S, Beets G, Braga M, Dejong K, Demartines N. Perioperative nutrition and enhanced recovery after surgery in gastrointestinal cancer patients. A position paper by the ESSO task force in collaboration with the ERAS society (ERAS coalition). Eur J Surg Oncol. 2018;44(4):509–14.

    Article  Google Scholar 

  42. Moya P, Miranda E, Soriano-Irigaray L, Arroyo A, Aguilar MD, Bellón M, Muñoz JL, Candela F, Calpena R. Perioperative immunonutrition in normo-nourished patients undergoing laparoscopic colorectal resection. Surg Endosc. 2016;30(11):4946–53.

    Google Scholar 

  43. Moya P, Soriano-Irigaray L, Ramirez JM, Garcea A, Blasco O, Blanco FJ, Brugiotti C, Miranda E, Arroyo A. Perioperative Standard Oral Nutrition Supplements Versus Immunonutrition in Patients Undergoing Colorectal Resection in an Enhanced Recovery (ERAS) Protocol: A Multicenter Randomized Clinical Trial (SONVI Study). Medicine (Baltimore). 2016;95(21).

    Google Scholar 

  44. Adiamah A, Skořepa P, Weimann A, Lobo DN. The Impact of Preoperative Immune Modulating Nutrition on Outcomes in Patients Undergoing Surgery for Gastrointestinal Cancer: A Systematic Review and Meta-analysis. Ann Surg. 2019;270(2):247–56.

    Google Scholar 

  45. Phillips JD, Kim CS, Fonkalsrud EW, Zeng H, Dindar H. Effects of chronic corticosteroids and vitamin A on the healing of intestinal anastomoses. Am J Surg. 1992;163(1):71–7.

    Article  CAS  Google Scholar 

  46. Kim CS, Buchmiller TL, Fonkalsrud EW, Phillips JD. The effect of anabolic steroids on ameliorating the adverse effects of chronic corticosteroids on intestinal anastomotic healing in rabbits. Surg Gynecol Obstet. 1993;176(1):73–9.

    CAS  PubMed  Google Scholar 

  47. Talas DU, Nayci A, Atis S, Comelekoglu U, Polat A, Bagdatoglu C, et al. The effects of corticosteroids and vitamin A on the healing of tracheal anastomoses. Int J Pediatr Otorhinolaryngol. 2003;67(2):109–16.

    Article  CAS  Google Scholar 

  48. Fasth S, Hellberg R, Hultén L, Magnusson O. Early complications after surgical treatment for Crohn’s disease with particular reference to factors affecting their development. Acta Chir Scand. 1980;146(7):519–26.

    CAS  PubMed  Google Scholar 

  49. Alves A, Panis Y, Bouhnik Y, Pocard M, Vicaut E, Valleur P. Risk factors for intra-abdominal septic complications after a first ileocecal resection for Crohn’s disease: a multivariate analysis in 161 consecutive patients. Dis Colon Rectum. 2007;50(3):331–6.

    Article  Google Scholar 

  50. Jacobson S. Early postoperative complications in patients with Crohn’s disease given and not given preoperative total parenteral nutrition. Scand J Gastroenterol. 2012;47(2):170–7.

    Article  CAS  Google Scholar 

  51. Li Y, Zuo L, Zhu W, Gong J, Zhang W, Gu L, et al. Role of exclusive enteral nutrition in the preoperative optimization of patients with Crohn’s disease following immunosuppressive therapy. Medicine. 2015;94(5):e478.

    Google Scholar 

  52. Heerasing N, Thompson B, Hendy P, Heap GA, Walker G, Bethune R, et al. Exclusive enteral nutrition provides an effective bridge to safer interval elective surgery for adults with Crohn’s disease. Aliment Pharmacol Ther. 2017;45(5):660–9.

    Article  CAS  Google Scholar 

  53. Brennan GT, Ha I, Hogan C, Nguyen E, Jamal MM, Bechtold ML, et al. Does preoperative enteral or parenteral nutrition reduce postoperative complications in Crohn’s disease patients: a meta-analysis. Eur J Gastroenterol Hepatol. 2018;30(9):997–1002.

    Article  Google Scholar 

  54. Yamamoto T. Nutrition and diet in inflammatory bowel disease. Curr Opin Gastroenterol. 2013;29(2):216–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias Soop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holubar, S.D., Soop, M. (2020). Perioperative Optimization of Patient Nutritional Status. In: Ljungqvist, O., Francis, N., Urman, R. (eds) Enhanced Recovery After Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-33443-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33443-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33442-0

  • Online ISBN: 978-3-030-33443-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics