Skip to main content

Pharmacogenomics in Perioperative Care

  • Chapter
  • First Online:
Enhanced Recovery After Surgery

Abstract

Pharmacogenomics is the study of how genetic differences between individuals affect pharmacokinetics and pharmacodynamics. These differences are apparent to clinicians when taking into account the wide range of responses to medications given in clinical practice. The implementation of preoperative pharmacogenomics will allow us to better care for our patients by delivering personalized, safer medicine. This chapter describes the current state of pharmacogenomics as it relates to perioperative care and how clinicians can use these tools to improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou S-F, Liu J-P, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009;41(2):89–295.

    Article  CAS  PubMed  Google Scholar 

  2. Yang Z, Yang Z, Arheart KL, Morris R, Zhang Y, Rodriguez Y, et al. CYP2D6 poor metabolizer genotype and smoking predict severe postoperative pain in female patients on arrival to the recovery room. Pain Med. 2012;13(4):604–9.

    Article  PubMed  Google Scholar 

  3. Palmer SN, Giesecke NM, Body SC, Shernan SK, Fox AA, Collard CD. Pharmacogenetics of anesthetic and analgesic agents. Anesthesiology. 2005;102(3):663–71.

    Article  CAS  PubMed  Google Scholar 

  4. He H, Yin J-Y, Xu Y-J, Li X, Zhang Y, Liu Z-G, et al. Association of ABCB1 polymorphisms with the efficacy of ondansetron in chemotherapy-induced nausea and vomiting. Clin Ther. 2014;36(8):1242–1252.e2.

    Article  CAS  PubMed  Google Scholar 

  5. Sadhasivam S, Chidambaran V, Zhang X, Meller J, Esslinger H, Zhang K, et al. Opioid-induced respiratory depression: ABCB1 transporter pharmacogenetics. Pharmacogenomics J. 2015;15(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  6. Kirstein SL, Insel PA. Autonomic nervous system pharmacogenomics: a progress report. Pharmacol Rev. 2004;56(1):31–52.

    Article  CAS  PubMed  Google Scholar 

  7. Landau R, Kern C, Columb MO, Smiley RM, Blouin J-L. Genetic variability of the mu-opioid receptor influences intrathecal fentanyl analgesia requirements in laboring women. Pain. 2008;139(1):5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang F, Tong J, Hu J, Zhang H, Ouyang W, Huang D, et al. COMT gene haplotypes are closely associated with postoperative fentanyl dose in patients. Anesth Analg. 2015;120(4):933–40.

    Article  PubMed  Google Scholar 

  9. Hwang IC, Park J-Y, Myung S-K, Ahn HY, Fukuda K, Liao Q. OPRM1 A118G gene variant and postoperative opioid requirement: a systematic review and meta-analysis. Anesthesiology. 2014;121(4):825–34.

    Article  PubMed  Google Scholar 

  10. Otton SV, Schadel M, Cheung SW, Kaplan HL, Busto UE, Sellers EM. CYP2D6 phenotype determines the metabolic conversion of hydrocodone to hydromorphone. Clin Pharmacol Ther. 1993;54(5):463–72.

    Article  CAS  PubMed  Google Scholar 

  11. Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2002;54(10):1271–94.

    Article  CAS  PubMed  Google Scholar 

  12. Naito T, Takashina Y, Yamamoto K, Tashiro M, Ohnishi K, Kagawa Y, et al. CYP3A5∗3 affects plasma disposition of noroxycodone and dose escalation in cancer patients receiving oxycodone. J Clin Pharmacol. 2011;51(11):1529–38.

    Article  CAS  PubMed  Google Scholar 

  13. Söderberg Löfdal KC, Andersson ML, Gustafsson LL. Cytochrome P450-mediated changes in oxycodone pharmacokinetics/pharmacodynamics and their clinical implications. Drugs. 2013;73(6):533–43.

    Article  CAS  PubMed  Google Scholar 

  14. Heiskanen T, Olkkola KT, Kalso E. Effects of blocking CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Clin Pharmacol Ther. 1998;64(6):603–11.

    Article  CAS  PubMed  Google Scholar 

  15. Andreassen TN, Eftedal I, Klepstad P, Davies A, Bjordal K, Lundström S, et al. Do CYP2D6 genotypes reflect oxycodone requirements for cancer patients treated for cancer pain? A cross-sectional multicentre study. Eur J Clin Pharmacol. 2012;68(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  16. Khan MS, Zetterlund E-L, Gréen H, Oscarsson A, Zackrisson A-L, Svanborg E, et al. Pharmacogenetics, plasma concentrations, clinical signs and EEG during propofol treatment. Basic Clin Pharmacol Toxicol. 2014;115(6):565–70.

    Article  CAS  PubMed  Google Scholar 

  17. Chelu MG, Goonasekera SA, Durham WJ, Tang W, Lueck JD, Riehl J, et al. Heat- and anesthesia-induced malignant hyperthermia in an RyR1 knock-in mouse. FASEB J. 2006;20(2):329–30.

    Article  CAS  PubMed  Google Scholar 

  18. Li W, Zhang L, Liang Y, Tong F, Zhou Y. Sudden death due to malignant hyperthermia with a mutation of RYR1: autopsy, morphology and genetic analysis. Forensic Sci Med Pathol. 2017;13(4):444–9.

    Article  PubMed  Google Scholar 

  19. Rosenberg H, Pollock N, Schiemann A, Bulger T, Stowell K. Malignant hyperthermia: a review. Orphanet J Rare Dis. 2015;10:93.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Carpenter D, Ringrose C, Leo V, Morris A, Robinson RL, Halsall PJ, et al. The role of CACNA1S in predisposition to malignant hyperthermia. BMC Med Genet. 2009;10:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Y, Coller JK, Hutchinson MR, Klein K, Zanger UM, Stanley NJ, et al. The CYP2B6∗6 allele significantly alters the N-demethylation of ketamine enantiomers in vitro. Drug Metab Dispos. 2013;41(6):1264–72.

    Article  CAS  PubMed  Google Scholar 

  22. Liem EB, Joiner TV, Tsueda K, Sessler DI. Increased sensitivity to thermal pain and reduced subcutaneous lidocaine efficacy in redheads. Anesthesiology. 2005;102(3):509–14.

    Article  CAS  PubMed  Google Scholar 

  23. Sheets PL, Jackson JO, Waxman SG, Dib-Hajj SD, Cummins TR. A Nav1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity. J Physiol Lond. 2007;581(Pt 3):1019–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stamer UM, Lee E-H, Rauers NI, Zhang L, Kleine-Brueggeney M, Fimmers R, et al. CYP2D6- and CYP3A-dependent enantioselective plasma concentrations of ondansetron in postanesthesia care. Anesth Analg. 2011;113(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  25. Dean L. Metoprolol therapy and CYP2D6 genotype. In: Pratt V, McLeod H, Rubinstein W, Dean L, Kattman B, Malheiro A, editors. Medical genetics summaries. Bethesda: National Center for Biotechnology Information (US); 2012.

    Google Scholar 

  26. Mei Y, Wang S-Y, Li Y, Yi S-Q, Wang C-Y, Yang M, et al. Role of SLCO1B1, ABCB1, and CHRNA1 gene polymorphisms on the efficacy of rocuronium in Chinese patients. J Clin Pharmacol. 2015;55(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  27. Trescot AM. Genetics and implications in perioperative analgesia. Best Pract Res Clin Anaesthesiol. 2014;28(2):153–66.

    Article  PubMed  Google Scholar 

  28. Cohen M, Sadhasivam S, Vinks AA. Pharmacogenetics in perioperative medicine. Curr Opin Anaesthesiol. 2012;25(4):419–27.

    Article  CAS  PubMed  Google Scholar 

  29. Riazi S, Kraeva N, Hopkins PM. Updated guide for the management of malignant hyperthermia. Can J Anaesth. 2018;65(6):709–21.

    Google Scholar 

  30. Stewart SL, Hogan K, Rosenberg H, Fletcher JE. Identification of the Arg1086His mutation in the alpha subunit of the voltage-dependent calcium channel (CACNA1S) in a North American family with malignant hyperthermia. Clin Genet. 2001;59(3):178–84.

    Article  CAS  PubMed  Google Scholar 

  31. Girard T, Urwyler A, Censier K, Mueller CR, Zorzato F, Treves S. Genotype-phenotype comparison of the Swiss malignant hyperthermia population. Hum Mutat. 2001;18(4):357–8.

    Article  CAS  PubMed  Google Scholar 

  32. Robinson RL, Brooks C, Brown SL, Ellis FR, Halsall PJ, Quinnell RJ, et al. RYR1 mutations causing central core disease are associated with more severe malignant hyperthermia in vitro contracture test phenotypes. Hum Mutat. 2002;20(2):88–97.

    Article  CAS  PubMed  Google Scholar 

  33. Guis S, Figarella-Branger D, Monnier N, Bendahan D, Kozak-Ribbens G, Mattei J-P, et al. Multiminicore disease in a family susceptible to malignant hyperthermia: histology, in vitro contracture tests, and genetic characterization. Arch Neurol. 2004;61(1):106–13.

    Article  PubMed  Google Scholar 

  34. Larrey D, Pageaux GP. Genetic predisposition to drug-induced hepatotoxicity. J Hepatol. 1997;26(Suppl 2):12–21.

    Article  CAS  PubMed  Google Scholar 

  35. Eliasson E, Gardner I, Hume-Smith H, de Waziers I, Beaune P, Kenna JG. Interindividual variability in P450-dependent generation of neoantigens in halothane hepatitis. Chem Biol Interact. 1998;116(1–2):123–41.

    Article  CAS  PubMed  Google Scholar 

  36. Kharasch ED, Hankins D, Mautz D, Thummel KE. Identification of the enzyme responsible for oxidative halothane metabolism: implications for prevention of halothane hepatitis. Lancet. 1996;347(9012):1367–71.

    Article  CAS  PubMed  Google Scholar 

  37. Sweeney BP. Do genes influence outcome from anaesthesia? Br J Anaesth. 2003;90(6):725–7.

    Article  CAS  PubMed  Google Scholar 

  38. Liem EB, Lin C-M, Suleman M-I, Doufas AG, Gregg RG, Veauthier JM, et al. Anesthetic requirement is increased in redheads. Anesthesiology. 2004;101(2):279–83.

    Article  CAS  PubMed  Google Scholar 

  39. Foster A, Mobley E, Wang Z. Complicated pain management in a CYP450 2D6 poor metabolizer. Pain Pract. 2007;7(4):352–6.

    Article  PubMed  Google Scholar 

  40. Saba R, Kaye AD, Urman RD. Pharmacogenomics in pain management. Anesthesiol Clin. 2017;35(2):295–304.

    Article  PubMed  Google Scholar 

  41. Ting S, Schug S. The pharmacogenomics of pain management: prospects for personalized medicine. J Pain Res. 2016;9:49–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kapur BM, Lala PK, Shaw JLV. Pharmacogenetics of chronic pain management. Clin Biochem. 2014;47(13–14):1169–87.

    Article  CAS  PubMed  Google Scholar 

  43. Nielsen LM, Olesen AE, Branford R, Christrup LL, Sato H, Drewes AM. Association between human pain-related genotypes and variability in opioid analgesia: an updated review. Pain Pract. 2015;15(6):580–94.

    Article  PubMed  Google Scholar 

  44. Butelman ER, Yuferov V, Kreek MJ. κ-opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction. Trends Neurosci. 2012;35(10):587–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Crist RC, Ambrose-Lanci LM, Vaswani M, Clarke TK, Zeng A, Yuan C, et al. Case-control association analysis of polymorphisms in the δ-opioid receptor, OPRD1, with cocaine and opioid addicted populations. Drug Alcohol Depend. 2013;127(1–3):122–8.

    Article  CAS  PubMed  Google Scholar 

  46. CPIC® guideline for codeine and CYP2D6 – CPIC. Available at: https://cpicpgx.org/guidelines/guideline-for-codeine-and-cyp2d6/.

  47. Owusu Obeng A, Hamadeh I, Smith M. Review of opioid pharmacogenetics and considerations for pain management. Pharmacotherapy. 2017;37(9):1105–21.

    Article  CAS  PubMed  Google Scholar 

  48. FDA warned about codeine use in certain children after tonsillectomy and/or adenoidectomy may lead to death. MediMoon. Available at: http://medimoon.com/2012/09/fda-warned-about-codeine-use-in-certain-children-after-tonsillectomy-andor-adenoidectomy-may-lead-to-death/.

  49. Kelly LE, Rieder M, van den Anker J, Malkin B, Ross C, Neely MN, et al. More codeine fatalities after tonsillectomy in North American children. Pediatrics. 2012;129(5):e1343–7.

    Article  PubMed  Google Scholar 

  50. Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G. Codeine, ultrarapid-metabolism genotype, and postoperative death. N Engl J Med. 2009;361(8):827–8.

    Article  CAS  PubMed  Google Scholar 

  51. Voronov P, Przybylo HJ, Jagannathan N. Apnea in a child after oral codeine: a genetic variant – an ultra-rapid metabolizer. Paediatr Anaesth. 2007;17(7):684–7.

    Article  PubMed  Google Scholar 

  52. Fukuda K, Hayashida M, Ide S, Saita N, Kokita Y, Kasai S, et al. Association between OPRM1 gene polymorphisms and fentanyl sensitivity in patients undergoing painful cosmetic surgery. Pain. 2009;147(1–3):194–201.

    Article  CAS  PubMed  Google Scholar 

  53. Hayashida M, Nagashima M, Satoh Y, Katoh R, Tagami M, Ide S, et al. Analgesic requirements after major abdominal surgery are associated with OPRM1 gene polymorphism genotype and haplotype. Pharmacogenomics. 2008;9(11):1605–16.

    Article  CAS  PubMed  Google Scholar 

  54. Ginosar Y, Davidson EM, Meroz Y, Blotnick S, Shacham M, Caraco Y. Mu-opioid receptor (A118G) single-nucleotide polymorphism affects alfentanil requirements for extracorporeal shock wave lithotripsy: a pharmacokinetic-pharmacodynamic study. Br J Anaesth. 2009;103(3):420–7.

    Article  CAS  PubMed  Google Scholar 

  55. Landau R, Liu S-K, Blouin J-L, Carvalho B. The effect of OPRM1 and COMT genotypes on the analgesic response to intravenous fentanyl labor analgesia. Anesth Analg. 2013;116(2):386–91.

    Article  CAS  PubMed  Google Scholar 

  56. Takashina Y, Naito T, Mino Y, Yagi T, Ohnishi K, Kawakami J. Impact of CYP3A5 and ABCB1 gene polymorphisms on fentanyl pharmacokinetics and clinical responses in cancer patients undergoing conversion to a transdermal system. Drug Metab Pharmacokinet. 2012;27(4):414–21.

    Article  CAS  PubMed  Google Scholar 

  57. Boswell MV, Stauble ME, Loyd GE, Langman L, Ramey-Hartung B, Baumgartner RN, et al. The role of hydromorphone and OPRM1 in postoperative pain relief with hydrocodone. Pain Physician. 2013;16(3):E227–35.

    PubMed  Google Scholar 

  58. US Food & Drug Administration. Background document pediatric advisory committee meeting Benefit/risk assessment of prescription opioid antitussive products for treatment of cough in pediatric patients. 2017. Available at: https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/PediatricAdvisoryCommittee/UCM575013.pdf.

  59. Madadi P, Hildebrandt D, Gong IY, Schwarz UI, Ciszkowski C, Ross CJD, et al. Fatal hydrocodone overdose in a child: pharmacogenetics and drug interactions. Pediatrics. 2010;126(4):e986–9.

    Article  PubMed  Google Scholar 

  60. Zanger UM, Klein K. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front Genet. 2013;4:24.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Crettol S, Déglon J-J, Besson J, Croquette-Krokar M, Hämmig R, Gothuey I, et al. ABCB1 and cytochrome P450 genotypes and phenotypes: influence on methadone plasma levels and response to treatment. Clin Pharmacol Ther. 2006;80(6):668–81.

    Article  CAS  PubMed  Google Scholar 

  62. Gadel S, Friedel C, Kharasch ED. Differences in methadone metabolism by CYP2B6 variants. Drug Metab Dispos. 2015;43(7):994–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lassen D, Damkier P, Brøsen K. The pharmacogenetics of tramadol. Clin Pharmacokinet. 2015;54(8):825–36.

    Article  CAS  PubMed  Google Scholar 

  64. Zwisler ST, Enggaard TP, Mikkelsen S, Brosen K, Sindrup SH. Impact of the CYP2D6 genotype on post-operative intravenous oxycodone analgesia. Acta Anaesthesiol Scand. 2010;54(2):232–40.

    Article  CAS  PubMed  Google Scholar 

  65. Clarke TK, Crist RC, Ang A, Ambrose-Lanci LM, Lohoff FW, Saxon AJ, et al. Genetic variation in OPRD1 and the response to treatment for opioid dependence with buprenorphine in European-American females. Pharmacogenomics J. 2014;14(3):303–8.

    Article  CAS  PubMed  Google Scholar 

  66. Riazi S, Kraeva N, Hopkins PM. Malignant hyperthermia in the post-genomics era: new perspectives on an old concept. Anesthesiology. 2018;128(1):168–80.

    Article  PubMed  Google Scholar 

  67. Litman RS, Griggs SM, Dowling JJ, Riazi S. Malignant hyperthermia susceptibility and related diseases. Anesthesiology. 2018;128(1):159–67.

    Article  PubMed  Google Scholar 

  68. Fukasawa T, Suzuki A, Otani K. Effects of genetic polymorphism of cytochrome P450 enzymes on the pharmacokinetics of benzodiazepines. J Clin Pharm Ther. 2007;32(4):333–41.

    Article  CAS  PubMed  Google Scholar 

  69. Janicki PK, Sugino S. Genetic factors associated with pharmacotherapy and background sensitivity to postoperative and chemotherapy-induced nausea and vomiting. Exp Brain Res. 2014;232(8):2613–25.

    Article  CAS  PubMed  Google Scholar 

  70. López-Morales P, Flores-Funes D, Sánchez-Migallón EG, Lirón-Ruiz RJ, Aguayo-Albasini JL. Genetic factors associated with postoperative nausea and vomiting: a systematic review. J Gastrointest Surg. 2018;22(9):1645–51.

    Article  PubMed  Google Scholar 

  71. Candiotti KA, Birnbach DJ, Lubarsky DA, Nhuch F, Kamat A, Koch WH, et al. The impact of pharmacogenomics on postoperative nausea and vomiting: do CYP2D6 allele copy number and polymorphisms affect the success or failure of ondansetron prophylaxis? Anesthesiology. 2005;102(3):543–9.

    Article  CAS  PubMed  Google Scholar 

  72. Wesmiller SW, Henker RA, Sereika SM, Donovan HS, Meng L, Gruen GS, et al. The association of CYP2D6 genotype and postoperative nausea and vomiting in orthopedic trauma patients. Biol Res Nurs. 2013;15(4):382–9.

    Article  CAS  PubMed  Google Scholar 

  73. Kim M-S, Lee J-R, Choi E-M, Kim EH, Choi SH. Association of 5-HT3B receptor gene polymorphisms with the efficacy of ondansetron for postoperative nausea and vomiting. Yonsei Med J. 2015;56(5):1415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bijl MJ, Visser LE, van Schaik RHN, Kors JA, Witteman JCM, Hofman A, et al. Genetic variation in the CYP2D6 gene is associated with a lower heart rate and blood pressure in beta-blocker users. Clin Pharmacol Ther. 2009;85(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  75. Luzum JA, Sweet KM, Binkley PF, Schmidlen TJ, Jarvis JP, Christman MF, et al. CYP2D6 Genetic variation and beta-blocker maintenance dose in patients with heart failure. Pharm Res. 2017;34(8):1615–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zineh I, Beitelshees AL, Gaedigk A, Walker JR, Pauly DF, Eberst K, et al. Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension. Clin Pharmacol Ther. 2004;76(6):536–44.

    Article  CAS  PubMed  Google Scholar 

  77. Fux R, Mörike K, Pröhmer AMT, Delabar U, Schwab M, Schaeffeler E, et al. Impact of CYP2D6 genotype on adverse effects during treatment with metoprolol: a prospective clinical study. Clin Pharmacol Ther. 2005;78(4):378–87.

    Article  CAS  PubMed  Google Scholar 

  78. Kirchheiner J, Heesch C, Bauer S, Meisel C, Seringer A, Goldammer M, et al. Impact of the ultrarapid metabolizer genotype of cytochrome P450 2D6 on metoprolol pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2004;76(4):302–12.

    Article  CAS  PubMed  Google Scholar 

  79. Ismail R, Teh LK. The relevance of CYP2D6 genetic polymorphism on chronic metoprolol therapy in cardiovascular patients. J Clin Pharm Ther. 2006;31(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  80. Goryachkina K, Burbello A, Boldueva S, Babak S, Bergman U, Bertilsson L. CYP2D6 is a major determinant of metoprolol disposition and effects in hospitalized Russian patients treated for acute myocardial infarction. Eur J Clin Pharmacol. 2008;64(12):1163–73.

    Article  CAS  PubMed  Google Scholar 

  81. Seeringer A, Brockmöller J, Bauer S, Kirchheiner J. Enantiospecific pharmacokinetics of metoprolol in CYP2D6 ultra-rapid metabolizers and correlation with exercise-induced heart rate. Eur J Clin Pharmacol. 2008;64(9):883–8.

    Article  CAS  PubMed  Google Scholar 

  82. Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin Pharmacol Ther. 2017;102(3):397–404.

    Article  CAS  PubMed  Google Scholar 

  83. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther. 2002;72(6):702–10.

    Article  CAS  PubMed  Google Scholar 

  84. Flora DR, Rettie AE, Brundage RC, Tracy TS. CYP2C9 Genotype-dependent warfarin pharmacokinetics: impact of CYP2C9 genotype on R- and S-Warfarin and their oxidative metabolites. J Clin Pharmacol. 2017;57(3):382–93.

    Article  CAS  PubMed  Google Scholar 

  85. Reitsma PH, van der Heijden JF, Groot AP, Rosendaal FR, Büller HR. A C1173T dimorphism in the VKORC1 gene determines coumarin sensitivity and bleeding risk. PLoS Med. 2005;2(10):e312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yin T, Miyata T. Warfarin dose and the pharmacogenomics of CYP2C9 and VKORC1 – rationale and perspectives. Thromb Res. 2007;120(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  87. Dean L. Clopidogrel therapy and CYP2C19 genotype. In: Pratt V, McLeod H, Rubinstein W, Dean L, Kattman B, Malheiro A, editors. Medical genetics summaries [Internet]. Bethesda: National Center for Biotechnology Information (US); 2012.

    Google Scholar 

  88. Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Méneveau N, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009;360(4):363–75.

    Article  CAS  PubMed  Google Scholar 

  89. Mega JL, Simon T, Collet J-P, Anderson JL, Antman EM, Bliden K, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA. 2010;304(16):1821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Holmes MV, Perel P, Shah T, Hingorani AD, Casas JP. CYP2C19 genotype, clopidogrel metabolism, platelet function, and cardiovascular events: a systematic review and meta-analysis. JAMA. 2011;306(24):2704–14.

    Article  CAS  PubMed  Google Scholar 

  91. Bauer T, Bouman HJ, van Werkum JW, Ford NF, ten Berg JM, Taubert D. Impact of CYP2C19 variant genotypes on clinical efficacy of antiplatelet treatment with clopidogrel: systematic review and meta-analysis. BMJ. 2011;343:d4588.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kaufman AL, Spitz J, Jacobs M, Sorrentino M, Yuen S, Danahey K, et al. Evidence for clinical implementation of pharmacogenomics in cardiac drugs. Mayo Clin Proc. 2015;90(6):716–29.

    Article  CAS  PubMed  Google Scholar 

  93. Relling MV, Klein TE. CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther. 2011;89(3):464–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Iravani M, Lee LK, Cannesson M. Standardized care versus precision medicine in the perioperative setting: can point-of-care testing help bridge the gap? Anesth Analg. 2017;124(4):1347–53.

    Article  PubMed  Google Scholar 

  95. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big data: astronomical or genomical? PLoS Biol. 2015;13(7):e1002195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Swen JJ, Nijenhuis M, van Rhenen M, de Boer-Veger NJ, Buunk A-M, Houwink EJF, et al. Pharmacogenetic information in clinical guidelines: the european perspective. Clin Pharmacol Ther. 2018;103(5):795–801.

    Article  PubMed  Google Scholar 

  97. Klein ME, Parvez MM, Shin J-G. Clinical implementation of pharmacogenomics for personalized precision medicine: barriers and solutions. J Pharm Sci. 2017;106(9):2368–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan David Kaye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koress, C.M., Novitch, M.B., Renschler, J.S., Kaye, A.D., Urman, R.D. (2020). Pharmacogenomics in Perioperative Care. In: Ljungqvist, O., Francis, N., Urman, R. (eds) Enhanced Recovery After Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-33443-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33443-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33442-0

  • Online ISBN: 978-3-030-33443-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics