Skip to main content

Task Adaptive Metric Space for Medium-Shot Medical Image Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

In the medical domain, one challenge of deep learning is to build sample-efficient models from a small number of labeled data. In recent years, meta-learning has become an important approach to few-shot image classification. However, current research on meta-learning focuses on learning from a few examples; we propose to extend few-shot learning to medium-shot to evaluate medical classification tasks in a more realistic setup. We build a baseline evaluation procedure by analyzing two representative meta-learning methods through the lens of bias-variance tradeoff, and propose to fuse the two techniques for better bias-variance equilibrium. The proposed method, Task Adaptive Metric Space (TAMS), fine-tunes parameters of a metric space to represent medical data in a more semantically meaningful way. Our empirical studies suggest that TAMS outperforms other baselines. Visualizations on the metric space show TAMS leads to better-separated clusters. Our baselines and evaluation procedure of the proposed TAMS opens the door to more research on medium-shot medical image classification.

X. Jiang, L. Ding—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, S., Bengio, Y., Cloutier, J., Gecsei, J.: On the optimization of a synaptic learning rule. In: Preprints Conference on Optimality in Artificial and Biological Neural Networks, pp. 6–8. University of Texas (1992)

    Google Scholar 

  2. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135 (2017)

    Google Scholar 

  3. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics, vol. 1. Springer, New York (2001). https://doi.org/10.1007/978-0-387-21606-5

    Book  MATH  Google Scholar 

  4. Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2018)

    Article  Google Scholar 

  5. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)

    Google Scholar 

  6. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  7. Maicas, G., Bradley, A.P., Nascimento, J.C., Reid, I., Carneiro, G.: Training medical image analysis systems like radiologists. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 546–554. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_62

    Chapter  Google Scholar 

  8. Mitchell, T.M., Thrun, S.B.: Explanation-based neural network learning for robot control. In: Advances in Neural Information Processing Systems, pp. 287–294 (1993)

    Google Scholar 

  9. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning (2016)

    Google Scholar 

  10. Schmidhuber, J.: Evolutionary principles in self-referential learning. On learning now to learn: the meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany, 14 May 1987. http://www.idsia.ch/~juergen/diploma.html

  11. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  12. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. CoRR abs/1703.05175 (2017). arXiv:1703.05175

  13. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002)

    Article  Google Scholar 

  14. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3630–3638 (2016)

    Google Scholar 

Download references

Acknowledgement

The authors thank Tanya Nair, Martine Bertrand and the Imagia team for their support. XJ acknowledges the support of NVIDIA Corporation with the donation of the Titan X GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Jiang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 687 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, X., Ding, L., Havaei, M., Jesson, A., Matwin, S. (2019). Task Adaptive Metric Space for Medium-Shot Medical Image Classification. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11764. Springer, Cham. https://doi.org/10.1007/978-3-030-32239-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32239-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32238-0

  • Online ISBN: 978-3-030-32239-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics