Skip to main content

Cannabinoid Signaling in Cancer

  • Chapter
  • First Online:
Recent Advances in Cannabinoid Physiology and Pathology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1162))

Abstract

The family of chemical structures that interact with a cannabinoid receptor are broadly termed cannabinoids. Traditionally known for their psychotropic effects and their use as palliative medicine in cancer, cannabinoids are very versatile and are known to interact with several orphan receptors besides cannabinoid receptors (CBR) in the body. Recent studies have shown that several key pathways involved in cell growth, differentiation and, even metabolism and apoptosis crosstalk with cannabinoid signaling. Several of these pathways including AKT, EGFR, and mTOR are known to contribute to tumor development and metastasis, and cannabinoids may reverse their effects, thereby by inducing apoptosis, autophagy and modulating the immune system. In this book chapter, we explore how cannabinoids regulate diverse signaling mechanisms in cancer and immune cells within the tumor microenvironment and whether they impart a therapeutic effect. We also provide some important insight into the role of cannabinoids in cellular and whole body metabolism in the context of tumor inhibition. Finally, we highlight recent and ongoing clinical trials that include cannabinoids as a therapeutic strategy and several combinational approaches towards novel therapeutic opportunities in several invasive cancer conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-AG:

2-arachindonoylglycerol

AEA:

anandamide

AMPK:

5′ AMP-activated protein kinase

CBD:

cannabinoids

CBR:

cannabinoid receptor

COX-2:

cyclooxygenase-2

CXCL:

C-X-C motif chemokine ligand

EGFR:

epidermal growth factor receptor

EMT:

epithelial to mesenchymal transition

E:R:

endoplasmic reticulum

mTOR:

mammalian target of rapamycin

PPAR:

peroxisome proliferator-activated receptors

ROS:

reactive oxygen species

TAMs:

tumor associated macrophages

THC:

Δ9-tetrahydrocannabinol

TME:

tumor microenvironment

TRPV2:

transient receptor potential cation channel subfamily V member 2.

References

  1. Navarro G, Varani K, Reyes-Resina I, Sanchez de Medina V, Rivas-Santisteban R, Sanchez-Carnerero Callado C, Vincenzi F, Casano S, Ferreiro-Vera C, Canela EI, Borea PA, Nadal X, Franco R (2018) Cannabigerol action at cannabinoid CB1 and CB2 receptors and at CB1-CB2 heteroreceptor complexes. Front Pharmacol 9:632

    Article  Google Scholar 

  2. Wang J, Wang Y, Tong M, Pan H, Li D (2019) New prospect for cancer cachexia: medical cannabinoid. J Cancer 10:716–720

    Article  Google Scholar 

  3. Kramer JL (2015) Medical marijuana for cancer. CA Cancer J Clin 65:109–122

    Article  Google Scholar 

  4. Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB(1) and CB(2). Pharmacol Rev 62:588–631

    Article  CAS  Google Scholar 

  5. Fernandez-Ruiz J, Romero J, Velasco G, Tolon RM, Ramos JA, Guzman M (2007) Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol Sci 28:39–45

    Article  CAS  Google Scholar 

  6. Katona I, Freund TF (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14:923–930

    Article  CAS  Google Scholar 

  7. Stempel AV, Stumpf A, Zhang HY, Ozdogan T, Pannasch U, Theis AK, Otte DM, Wojtalla A, Racz I, Ponomarenko A, Xi ZX, Zimmer A, Schmitz D (2016) Cannabinoid Type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron 90:795–809

    Article  CAS  Google Scholar 

  8. Li X, Hua T, Vemuri K, Ho JH, Wu Y, Wu L, Popov P, Benchama O, Zvonok N, Locke K, Qu L, Han GW, Iyer MR, Cinar R, Coffey NJ, Wang J, Wu M, Katritch V, Zhao S, Kunos G, Bohn LM, Makriyannis A, Stevens RC, Liu ZJ (2019) Crystal structure of the human cannabinoid receptor CB2. Cell 176:459–67.e13

    Article  CAS  Google Scholar 

  9. Davis MP (2016) Cannabinoids for symptom management and cancer therapy: the evidence. J Natl Compr Cancer Netw 14:915–922

    Article  CAS  Google Scholar 

  10. Fowler CJ (2015) Delta(9) -tetrahydrocannabinol and cannabidiol as potential curative agents for cancer: a critical examination of the preclinical literature. Clin Pharmacol Ther 97:587–596

    Article  CAS  Google Scholar 

  11. Solinas M, Massi P, Cantelmo AR, Cattaneo MG, Cammarota R, Bartolini D, Cinquina V, Valenti M, Vicentini LM, Noonan DM, Albini A, Parolaro D (2012) Cannabidiol inhibits angiogenesis by multiple mechanisms. Br J Pharmacol 167:1218–1231

    Article  CAS  Google Scholar 

  12. Panatier A, Vallee J, Haber M, Murai KK, Lacaille JC, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–798

    Article  CAS  Google Scholar 

  13. Galve-Roperh I, Sanchez C, Cortes ML, Gomez del Pulgar T, Izquierdo M, Guzman M (2000) Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med 6:313–319

    Article  CAS  Google Scholar 

  14. Carracedo A, Lorente M, Egia A, Blazquez C, Garcia S, Giroux V, Malicet C, Villuendas R, Gironella M, Gonzalez-Feria L, Piris MA, Iovanna JL, Guzman M, Velasco G (2006) The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell 9:301–312

    Article  CAS  Google Scholar 

  15. Jia W, Hegde VL, Singh NP, Sisco D, Grant S, Nagarkatti M, Nagarkatti PS (2006) Delta9-tetrahydrocannabinol-induced apoptosis in Jurkat leukemia T cells is regulated by translocation of Bad to mitochondria. Mol Cancer Res 4:549–562

    Article  CAS  Google Scholar 

  16. Greenhough A, Patsos HA, Williams AC, Paraskeva C (2007) The cannabinoid delta(9)-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. Int J Cancer 121:2172–2180

    Article  CAS  Google Scholar 

  17. Vara D, Salazar M, Olea-Herrero N, Guzman M, Velasco G, Diaz-Laviada I (2011) Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Cell Death Differ 18:1099–1111

    Article  CAS  Google Scholar 

  18. Torres S, Lorente M, Rodriguez-Fornes F, Hernandez-Tiedra S, Salazar M, Garcia-Taboada E, Barcia J, Guzman M, Velasco G (2011) A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol Cancer Ther 10:90–103

    Article  CAS  Google Scholar 

  19. Caffarel MM, Sarrio D, Palacios J, Guzman M, Sanchez C (2006) Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res 66:6615–6621

    Article  CAS  Google Scholar 

  20. Caffarel MM, Moreno-Bueno G, Cerutti C, Palacios J, Guzman M, Mechta-Grigoriou F, Sanchez C (2008) JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene 27:5033–5044

    Article  CAS  Google Scholar 

  21. Vara D, Morell C, Rodriguez-Henche N, Diaz-Laviada I (2013) Involvement of PPARgamma in the antitumoral action of cannabinoids on hepatocellular carcinoma. Cell Death Dis 4:e618

    Article  CAS  Google Scholar 

  22. McAllister SD, Soroceanu L, Desprez PY (2015) The antitumor activity of plant-derived non-psychoactive cannabinoids. J NeuroImmune Pharmacol 10:255–267

    Article  Google Scholar 

  23. Ramer R, Heinemann K, Merkord J, Rohde H, Salamon A, Linnebacher M, Hinz B (2013) COX-2 and PPAR-gamma confer cannabidiol-induced apoptosis of human lung cancer cells. Mol Cancer Ther 12:69–82

    Article  CAS  Google Scholar 

  24. Elbaz M, Nasser MW, Ravi J, Wani NA, Ahirwar DK, Zhao H, Oghumu S, Satoskar AR, Shilo K, Carson WE 3rd, Ganju RK (2015) Modulation of the tumor microenvironment and inhibition of EGF/EGFR pathway: novel anti-tumor mechanisms of Cannabidiol in breast cancer. Mol Oncol 9:906–919

    Article  CAS  Google Scholar 

  25. Qamri Z, Preet A, Nasser MW, Bass CE, Leone G, Barsky SH, Ganju RK (2009) Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther 8:3117–3129

    Article  CAS  Google Scholar 

  26. Grimaldi C, Pisanti S, Laezza C, Malfitano AM, Santoro A, Vitale M, Caruso MG, Notarnicola M, Iacuzzo I, Portella G, Di Marzo V, Bifulco M (2006) Anandamide inhibits adhesion and migration of breast cancer cells. Exp Cell Res 312:363–373

    Article  CAS  Google Scholar 

  27. Preet A, Ganju RK, Groopman JE (2008) Delta9-Tetrahydrocannabinol inhibits epithelial growth factor-induced lung cancer cell migration in vitro as well as its growth and metastasis in vivo. Oncogene 27:339–346

    Article  CAS  Google Scholar 

  28. Guzman M (2003) Cannabinoids: potential anticancer agents. Nat Rev Cancer 3:745–755

    Article  CAS  Google Scholar 

  29. Nasser MW, Qamri Z, Deol YS, Smith D, Shilo K, Zou X, Ganju RK (2011) Crosstalk between chemokine receptor CXCR4 and cannabinoid receptor CB2 in modulating breast cancer growth and invasion. PLoS One 6:e23901

    Article  CAS  Google Scholar 

  30. Lombard C, Nagarkatti M, Nagarkatti P (2007) CB2 cannabinoid receptor agonist, JWH-015, triggers apoptosis in immune cells: potential role for CB2-selective ligands as immunosuppressive agents. Clin Immunol 122:259–270

    Article  CAS  Google Scholar 

  31. McKallip RJ, Jia W, Schlomer J, Warren JW, Nagarkatti PS, Nagarkatti M (2006) Cannabidiol-induced apoptosis in human leukemia cells: a novel role of cannabidiol in the regulation of p22phox and Nox4 expression. Mol Pharmacol 70:897–908

    Article  CAS  Google Scholar 

  32. Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM, Ferns GA, Pasdar A, Avan A (2017) Therapeutic potentials of BDNF/TrkB in breast cancer; current status and perspectives. J Cell Biochem 118:2502–2515

    Article  CAS  Google Scholar 

  33. Binabaj MM, Bahrami A, ShahidSales S, Joodi M, Joudi Mashhad M, Hassanian SM, Anvari K, Avan A (2018) The prognostic value of MGMT promoter methylation in glioblastoma: a meta-analysis of clinical trials. J Cell Physiol 233:378–386

    Article  CAS  Google Scholar 

  34. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  CAS  Google Scholar 

  35. Lin CY, Lin CJ, Chen KH, Wu JC, Huang SH, Wang SM (2006) Macrophage activation increases the invasive properties of hepatoma cells by destabilization of the adherens junction. FEBS Lett 580:3042–3050

    Article  CAS  Google Scholar 

  36. Ruffell B, Affara NI, Coussens LM (2012) Differential macrophage programming in the tumor microenvironment. Trends Immunol 33:119–126

    Article  CAS  Google Scholar 

  37. Liu CY, Xu JY, Shi XY, Huang W, Ruan TY, Xie P, Ding JL (2013) M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Investig 93:844–854

    Article  CAS  Google Scholar 

  38. Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6:1670–1690

    Article  CAS  Google Scholar 

  39. Ravi J, Elbaz M, Wani NA, Nasser MW, Ganju RK (2016) Cannabinoid receptor-2 agonist inhibits macrophage induced EMT in non-small cell lung cancer by downregulation of EGFR pathway. Mol Carcinog 55:2063–2076

    Article  CAS  Google Scholar 

  40. Croxford JL, Yamamura T (2005) Cannabinoids and the immune system: potential for the treatment of inflammatory diseases? J Neuroimmunol 166:3–18

    Article  CAS  Google Scholar 

  41. Borner C, Smida M, Hollt V, Schraven B, Kraus J (2009) Cannabinoid receptor type 1- and 2-mediated increase in cyclic AMP inhibits T cell receptor-triggered signaling. J Biol Chem 284:35450–35460

    Article  Google Scholar 

  42. Zhu LX, Sharma S, Stolina M, Gardner B, Roth MD, Tashkin DP, Dubinett SM (2000) Delta-9-tetrahydrocannabinol inhibits antitumor immunity by a CB2 receptor-mediated, cytokine-dependent pathway. J Immunol 165:373–380

    Article  CAS  Google Scholar 

  43. Jenny M, Schrocksnadel S, Uberall F, Fuchs D (2010) The potential role of cannabinoids in modulating serotonergic signaling by their influence on tryptophan metabolism. Pharmaceuticals (Basel) 3:2647–2660

    Article  CAS  Google Scholar 

  44. Newton CA, Klein TW, Friedman H (1994) Secondary immunity to Legionella pneumophila and Th1 activity are suppressed by delta-9-tetrahydrocannabinol injection. Infect Immun 62:4015–4020

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vieweg J, Su Z, Dahm P, Kusmartsev S (2007) Reversal of tumor-mediated immunosuppression. Clin Cancer Res 13:727s–732s

    Article  CAS  Google Scholar 

  46. Chen WL, Wang JH, Zhao AH, Xu X, Wang YH, Chen TL, Li JM, Mi JQ, Zhu YM, Liu YF, Wang YY, Jin J, Huang H, Wu DP, Li Y, Yan XJ, Yan JS, Li JY, Wang S, Huang XJ, Wang BS, Chen Z, Chen SJ, Jia W (2014) A distinct glucose metabolism signature of acute myeloid leukemia with prognostic value. Blood 124:1645–1654

    Article  CAS  Google Scholar 

  47. Staubert C, Bhuiyan H, Lindahl A, Broom OJ, Zhu Y, Islam S, Linnarsson S, Lehtio J, Nordstrom A (2015) Rewired metabolism in drug-resistant leukemia cells: a metabolic switch hallmarked by reduced dependence on exogenous glutamine. J Biol Chem 290:8348–8359

    Article  Google Scholar 

  48. Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168:657–669

    Article  CAS  Google Scholar 

  49. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47

    Article  CAS  Google Scholar 

  50. Bosc C, Selak MA, Sarry JE (2017) Resistance is futile: targeting mitochondrial energetics and metabolism to overcome drug resistance in cancer treatment. Cell Metab 26:705–707

    Article  CAS  Google Scholar 

  51. Anderson RG, Ghiraldeli LP, Pardee TS (2018) Mitochondria in cancer metabolism, an organelle whose time has come? Biochim Biophys Acta Rev Cancer 1870:96–102

    Article  CAS  Google Scholar 

  52. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638

    Article  Google Scholar 

  53. Goodwin PJ (2015) Obesity, insulin resistance and breast cancer outcomes. Breast 24(Suppl 2):S56–S59

    Article  Google Scholar 

  54. Koivunen J, Aaltonen V, Peltonen J (2006) Protein kinase C (PKC) family in cancer progression. Cancer Lett 235:1–10

    Article  CAS  Google Scholar 

  55. Faubert B, Vincent EE, Poffenberger MC, Jones RG (2015) The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator. Cancer Lett 356:165–170

    Article  CAS  Google Scholar 

  56. Cooke M, Magimaidas A, Casado-Medrano V, Kazanietz MG (2017) Protein kinase C in cancer: the top five unanswered questions. Mol Carcinog 56:1531–1542

    Article  CAS  Google Scholar 

  57. Yap TA, Bjerke L, Clarke PA, Workman P (2015) Drugging PI3K in cancer: refining targets and therapeutic strategies. Curr Opin Pharmacol 23:98–107

    Article  CAS  Google Scholar 

  58. Panieri E, Santoro MM (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 7:e2253

    Article  CAS  Google Scholar 

  59. Legaspi A, Jeevanandam M, Starnes HF Jr, Brennan MF (1987) Whole body lipid and energy metabolism in the cancer patient. Metabolism 36:958–963

    Article  CAS  Google Scholar 

  60. Liu Y (2006) Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis 9:230–234

    Article  CAS  Google Scholar 

  61. Bian Y, Yu Y, Wang S, Li L (2015) Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer. Biochem Biophys Res Commun 463:612–617

    Article  CAS  Google Scholar 

  62. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:613–621

    CAS  PubMed  Google Scholar 

  63. Kumar R, Coronel L, Somalanka B, Raju A, Aning OA, An O, Ho YS, Chen S, Mak SY, Hor PY, Yang H, Lakshmanan M, Itoh H, Tan SY, Lim YK, Wong APC, Chew SH, Huynh TH, Goh BC, Lim CY, Tergaonkar V, Cheok CF (2018) Mitochondrial uncoupling reveals a novel therapeutic opportunity for p53-defective cancers. Nat Commun 9:3931

    Article  CAS  Google Scholar 

  64. Burt ME, Stein TP, Schwade JG, Brennan MF (1984) Whole-body protein metabolism in cancer-bearing patients. Effect of total parenteral nutrition and associated serum insulin response. Cancer 53:1246–1252

    Article  CAS  Google Scholar 

  65. Lim CT, Kola B, Feltrin D, Perez-Tilve D, Tschop MH, Grossman AB, Korbonits M (2013) Ghrelin and cannabinoids require the ghrelin receptor to affect cellular energy metabolism. Mol Cell Endocrinol 365:303–308

    Article  CAS  Google Scholar 

  66. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, Fulton L, Fulton RS, Zhang Q, Wendl MC, Lawrence MS, Larson DE, Chen K, Dooling DJ, Sabo A, Hawes AC, Shen H, Jhangiani SN, Lewis LR, Hall O, Zhu Y, Mathew T, Ren Y, Yao J, Scherer SE, Clerc K, Metcalf GA, Ng B, Milosavljevic A, Gonzalez-Garay ML, Osborne JR, Meyer R, Shi X, Tang Y, Koboldt DC, Lin L, Abbott R, Miner TL, Pohl C, Fewell G, Haipek C, Schmidt H, Dunford-Shore BH, Kraja A, Crosby SD, Sawyer CS, Vickery T, Sander S, Robinson J, Winckler W, Baldwin J, Chirieac LR, Dutt A, Fennell T, Hanna M, Johnson BE, Onofrio RC, Thomas RK, Tonon G, Weir BA, Zhao X, Ziaugra L, Zody MC, Giordano T, Orringer MB, Roth JA, Spitz MR, Wistuba II, Ozenberger B, Good PJ, Chang AC, Beer DG, Watson MA, Ladanyi M, Broderick S, Yoshizawa A, Travis WD, Pao W, Province MA, Weinstock GM, Varmus HE, Gabriel SB, Lander ES, Gibbs RA, Meyerson M, Wilson RK (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    Article  CAS  Google Scholar 

  67. Phoenix KN, Vumbaca F, Claffey KP (2009) Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model. Breast Cancer Res Treat 113:101–111

    Article  CAS  Google Scholar 

  68. Baba Y, Nosho K, Shima K, Meyerhardt JA, Chan AT, Engelman JA, Cantley LC, Loda M, Giovannucci E, Fuchs CS, Ogino S (2010) Prognostic significance of AMP-activated protein kinase expression and modifying effect of MAPK3/1 in colorectal cancer. Br J Cancer 103:1025–1033

    Article  CAS  Google Scholar 

  69. William WN, Kim JS, Liu DD, Solis L, Behrens C, Lee JJ, Lippman SM, Kim ES, Hong WK, Wistuba II, Lee HY (2012) The impact of phosphorylated AMP-activated protein kinase expression on lung cancer survival. Ann Oncol 23:78–85

    Article  CAS  Google Scholar 

  70. Sozio MS, Lu C, Zeng Y, Liangpunsakul S, Crabb DW (2011) Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells. Am J Physiol Gastrointest Liver Physiol 301:G739–G747

    Article  CAS  Google Scholar 

  71. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr (2013) Cellular fatty acid metabolism and cancer. Cell Metab 18:153–161

    Article  CAS  Google Scholar 

  72. Dando I, Donadelli M, Costanzo C, Dalla Pozza E, D’Alessandro A, Zolla L, Palmieri M (2013) Cannabinoids inhibit energetic metabolism and induce AMPK-dependent autophagy in pancreatic cancer cells. Cell Death Dis 4:e664

    Article  CAS  Google Scholar 

  73. Tedesco L, Valerio A, Dossena M, Cardile A, Ragni M, Pagano C, Pagotto U, Carruba MO, Vettor R, Nisoli E (2010) Cannabinoid receptor stimulation impairs mitochondrial biogenesis in mouse white adipose tissue, muscle, and liver: the role of eNOS, p38 MAPK, and AMPK pathways. Diabetes 59:2826–2836

    Article  CAS  Google Scholar 

  74. Kim W, Doyle ME, Liu Z, Lao Q, Shin YK, Carlson OD, Kim HS, Thomas S, Napora JK, Lee EK, Moaddel R, Wang Y, Maudsley S, Martin B, Kulkarni RN, Egan JM (2011) Cannabinoids inhibit insulin receptor signaling in pancreatic beta-cells. Diabetes 60:1198–1209

    Article  CAS  Google Scholar 

  75. Liu J, Zhou L, Xiong K, Godlewski G, Mukhopadhyay B, Tam J, Yin S, Gao P, Shan X, Pickel J, Bataller R, O’Hare J, Scherer T, Buettner C, Kunos G (2012) Hepatic cannabinoid receptor-1 mediates diet-induced insulin resistance via inhibition of insulin signaling and clearance in mice. Gastroenterology 142:1218–1228.e1

    Article  CAS  Google Scholar 

  76. Singh N, Hroudova J, Fisar Z (2015) Cannabinoid-induced changes in the activity of electron transport chain complexes of brain mitochondria. J Mol Neurosci 56:926–931

    Article  CAS  Google Scholar 

  77. Donadelli M, Dando I, Zaniboni T, Costanzo C, Dalla Pozza E, Scupoli MT, Scarpa A, Zappavigna S, Marra M, Abbruzzese A, Bifulco M, Caraglia M, Palmieri M (2011) Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death Dis 2:e152

    Article  CAS  Google Scholar 

  78. Han KH, Lim S, Ryu J, Lee CW, Kim Y, Kang JH, Kang SS, Ahn YK, Park CS, Kim JJ (2009) CB1 and CB2 cannabinoid receptors differentially regulate the production of reactive oxygen species by macrophages. Cardiovasc Res 84:378–386

    Article  CAS  Google Scholar 

  79. Hall W, Christie M, Currow D (2005) Cannabinoids and cancer: causation, remediation, and palliation. Lancet Oncol 6:35–42

    Article  CAS  Google Scholar 

  80. Guzman M, Duarte MJ, Blazquez C, Ravina J, Rosa MC, Galve-Roperh I, Sanchez C, Velasco G, Gonzalez-Feria L (2006) A pilot clinical study of Delta9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br J Cancer 95:197–203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Department of Defense Level II Breakthrough Award and Pelotonia IDEA Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh K. Ganju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S., Kaul, K., Mishra, S., Charan, M., Ganju, R.K. (2019). Cannabinoid Signaling in Cancer. In: Bukiya, A. (eds) Recent Advances in Cannabinoid Physiology and Pathology. Advances in Experimental Medicine and Biology, vol 1162. Springer, Cham. https://doi.org/10.1007/978-3-030-21737-2_4

Download citation

Publish with us

Policies and ethics