Skip to main content

Vascular Ultrasound Imaging with Contrast Agents: Carotid Plaque Neovascularization and the Hyperplastic Vasa Vasorum Network

  • Chapter
  • First Online:
Ultrasound and Carotid Bifurcation Atherosclerosis

Abstract

Despite continuing advances in the sensitivity of diagnostic ultrasound systems, Doppler-based imaging techniques are unable to detect low velocity blood flow in the microcirculation. The main difficulty these techniques share is that blood is a weak reflector of ultrasound with received amplitude 40–60 dB smaller than that of tissue. As a result, Doppler-based techniques rely solely on the movement of red blood cells to differentiate blood flow from tissue. The removal of this tissue signal places a lower limit on the ability to detect low velocity blood flow (<1 cm/s). A method to overcome these difficulties is to inject brighter reflectors than blood into the vascular system. Gas-filled microbubbles are one such reflector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sitzer M, Fürst G, Siebler M, Steinmetz H. Usefulness of an intravenous contrast medium in the characterization of high-grade internal carotid stenosis with color Doppler-assisted duplex imaging. Stroke. 1994;25(2):385–389.

    Article  PubMed  CAS  Google Scholar 

  2. Ferrer JM et al. Use of ultrasound contrast in the diagnosis of carotid artery occlusion. J Vasc Surg. 2000;31(4): 736–741.

    Article  PubMed  CAS  Google Scholar 

  3. Holden A, Hope JK, Osborne M, Moriarty M, Lee K. Value of a contrast agent in equivocal carotid ultrasound studies: pictorial essay. Australas Radiol. 2000;44(3): 253–260.

    Article  PubMed  CAS  Google Scholar 

  4. Hansberg T, Wong KS, Droste DW, Ringelstein EB, Kay R. Effects of the ultrasound contrast-enhancing agent Levovist on the detection of intracranial arteries and stenoses in Chinese by transcranial Doppler ultrasound. Cerebrovasc Dis. 2002;14(2):105–108.

    Article  PubMed  CAS  Google Scholar 

  5. Tateishi Y et al. Contrast-enhanced transcranial color-coded duplex sonography criteria for basilar artery stenosis. J Neuroimaging. 2008;18(4):407–410.

    Article  PubMed  Google Scholar 

  6. Rajaram V et al. Role of surrogate markers in assessing patients with diabetes mellitus and the metabolic syndrome and in evaluation lipid-lowering therapy. Am J Cardiol. 2004;93(11A):32C-48C.

    Article  PubMed  CAS  Google Scholar 

  7. McCarthy MJ et al. Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J Vasc Surg. 1999;30(2):261–268.

    Article  PubMed  CAS  Google Scholar 

  8. Mofidi R et al. Association between plaque instability, angiogenesis and symptomatic carotid occlusive disease. Br J Surg. 2001;88(7):945–950.

    Article  PubMed  CAS  Google Scholar 

  9. Huang PT et al. Contrast-enhanced sonographic characteristics of neovascularization in carotid atherosclerotic plaques. J Clin Ultrasound. 2008;36(6):346–351.

    Article  PubMed  Google Scholar 

  10. Feinstein SB. Contrast ultrasound imaging of the carotid artery vasa vasorum and atherosclerotic plaque neovascularization. J Am Coll Cardiol. 2006;48(2):236–243.

    Article  PubMed  Google Scholar 

  11. Vicenzini E et al. Detection of carotid adventitial vasa vasorum and plaque vascularization with ultrasound cadence contrast pulse sequencing technique and echo-contrast agent. Stroke. 2007;38:2841–2843.

    Article  PubMed  Google Scholar 

  12. Giannoni MF, Vicenzini E. Focus on the “unstable” carotid plaque: detection of intraplaque angiogenesis with contrast ultrasound. Present state and future perspectives. Curr Vasc Pharmacol. 2009;7(2):180–184.

    Article  PubMed  CAS  Google Scholar 

  13. Shah F et al. Contrast-enhanced ultrasound imaging of atherosclerotic carotid plaque neovascularization: a new surrogate marker of atherosclerosis? Vasc Med. 2007;12(4): 291–297.

    Article  PubMed  Google Scholar 

  14. Coli S et al. Contrast-enhanced ultrasound imaging of intraplaque neovascularization in carotid arteries: correlation with histology and plaque echogenicity. J Am Coll Cardiol. 2008;52(3):223–230.

    Article  PubMed  Google Scholar 

  15. Xiong L et al. Correlation of carotid plaque neovascularization detected by using contrast-enhanced US with clinical symptoms. Radiology. 2009;251(2):583–589.

    Article  PubMed  Google Scholar 

  16. Owen DR et al. Inflammation within carotid atherosclerotic plaque: assessment with late-phase contrast-enhanced US. Radiology. 2010;255(2):638–644.

    Article  PubMed  Google Scholar 

  17. Staub D et al. Vasa vasorum and plaque neovascularization on contrast-enhanced carotid ultrasound imaging correlates with cardiovascular disease and past cardiovascular events. Stroke. 2010;41(1):41–47.

    Article  PubMed  Google Scholar 

  18. Leighton TG. The Acoustic Bubble. San Diego: Academic; 1997.

    Google Scholar 

  19. Villarraga HR, Foley DA, Aeschbacher BC, Klarich KW, Mulvagh SL. Destruction of contrast microbubbles during ultrasound imaging at conventional power output. J Am Soc Echocardiogr. 1997;10(8):783–791.

    Article  PubMed  CAS  Google Scholar 

  20. Walker KW, Pantely GA, Sahn DJ. Ultrasound-mediated destruction of contrast agents. Effect of ultrasound intensity, exposure, and frequency. Invest Radiol. 1997;32(12): 728–734.

    Article  PubMed  CAS  Google Scholar 

  21. Berne RM, Levy MN, eds. Cardiovascular Physiology. 2nd ed. St. Louis: C.V. Mosby Co; 1972:265.

    Google Scholar 

  22. Porter T, Xie F. Transient myocardial contrast following initial exposure to diagnostic ultrasound pressures with minute doses of intravenously injected microbubbles: demonstration and potential mechanisms. Circulation. 1995; 92:2391–2395.

    PubMed  CAS  Google Scholar 

  23. Porter TR, Xie F, Kricsfeld D, Armbruster R. Improved myocardial contrast with second harmonic transient ultrasound response imaging in humans using intravenous perfluorocarbon-exposed sonicated dextrose albumin. J Am Coll Cardiol. 1996;27(6):1497–1501.

    Article  PubMed  CAS  Google Scholar 

  24. Heckemann RA et al. Liver lesions: intermittent second-harmonic gray-scale US can increase conspicuity with microbubble contrast material-early experience. Radiology. 2000;216(2):592–596.

    PubMed  CAS  Google Scholar 

  25. Kim TK, Choi BI, Hong HS, Choi BY, Han JK. Improved imaging of hepatic metastases with delayed pulse inversion harmonic imaging using a contrast agent SH U 508A: preliminary study. Ultrasound Med Biol. 2000;26(9): 1439–1444.

    Article  PubMed  CAS  Google Scholar 

  26. Wilson SR, Burns PN, Muradali D, Wilson JA, Lai X. Harmonic hepatic US with microbubble contrast agent: initial experience showing improved characterization of hemangioma, hepatocellular carcinoma, and metastasis. Radiology. 2000;215(1):153–161.

    PubMed  CAS  Google Scholar 

  27. Averkiou MA, Mannaris C, Bruce M, Powers J. Nonlinear pulsing schemes for the detection of ultrasound contrast agents. In: Proceedings of the 155th Meeting of the ASA, Acoustics 2008; 2008; Paris:915–920.

    Google Scholar 

  28. Averkiou MA, Roundhill DN, Powers JE. New imaging technique based on the nonlinear properties of tissues. Proc IEEE Ultrason Symp. 1997;2:1561–1566.

    Google Scholar 

  29. Greis C. Technology overview: SonoVue (Bracco, Milan). Eur Radiol. 2004;14(suppl 8):11–15.

    Google Scholar 

  30. Stewart GN. Researches on the circulation time and on the influences which affect it. IV. The output of the heart. J Physiol. 1897;22:159–183.

    PubMed  CAS  Google Scholar 

  31. Henriques V. Űber die Verteilung des Blutes vom linken Herzen zwischen dem Herzen und dem űbrigen Organismus. Biochem Ztschr. 1913;56:230–248.

    Google Scholar 

  32. Hamilton WF, Moore JW, Kinsman JM, Spurling RG. Simultaneous determination of the pulmonary and systemic circulation times in man and of a figure related to cardiac output. Am J Physiol. 1928;84:338–344.

    CAS  Google Scholar 

  33. Lampaskis M, Averkiou MA. Investigation of the relationship of non-linear backscattered ultrasound intensity with microbubble concentration at low MI. Ultrasound Med Biol. 2010;36(2):306–312.

    Article  PubMed  Google Scholar 

  34. Tang MX, Elson DS, Li R, Dunsby C, Eckersley RJ. Effects of nonlinear propagation in ultrasound contrast agent imaging. Ultrasound Med Biol. 2010;36(3):459–466.

    Article  PubMed  Google Scholar 

  35. Averkiou MA et al. Quantification of tumor microvascularity with respiratory gated contrast enhanced ultrasound for monitoring therapy. Ultrasound Med Biol. 2010;36(1):68–77.

    Article  PubMed  Google Scholar 

  36. Lassau N et al. Metastatic renal cell carcinoma treated with sunitinib: early evaluation of treatment response using dynamic contrast-enhanced ultrasonography. Clin Cancer Res. 2010;16(4):1216–1225.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the help of Marios Lampaskis and Christina Keravnou with patient data analysis. This work is supported by the Cyprus Research Promotion Foundation through the grant Vasorum (Grant number: Ygeia/0506/06).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Averkiou, M.A., Mannaris, C., Nicolaides, A. (2011). Vascular Ultrasound Imaging with Contrast Agents: Carotid Plaque Neovascularization and the Hyperplastic Vasa Vasorum Network. In: Nicolaides, A., Beach, K., Kyriacou, E., Pattichis, C. (eds) Ultrasound and Carotid Bifurcation Atherosclerosis. Springer, London. https://doi.org/10.1007/978-1-84882-688-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-688-5_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-687-8

  • Online ISBN: 978-1-84882-688-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics