Skip to main content

Vascular Hemodynamics of the Carotid Bifurcation and Its Relation to Arterial Disease

  • Chapter
  • First Online:
Ultrasound and Carotid Bifurcation Atherosclerosis

Abstract

The hemodynamic hypothesis of atherosclerosis postulates that blood flow characteristics are a synergistic factor in the development of the disease in large arteries. This was first reported in 1968 by Fry1 who postulated that acute vascular endothelial damage is associated with increased blood velocity gradients and wall shear stress (WSS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fry DL. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res. 1968;22:165–197.

    PubMed  CAS  Google Scholar 

  2. Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond. 1971;177:109–159.

    Article  PubMed  CAS  Google Scholar 

  3. Friedman MH, Bargeron CB, Hutchins GM, Mark FF, Deters OJ. Hemodynamic measurements in human arterial casts, and their correlation with histology and luminal area. J Biomech Eng. 1980;102:247.

    Article  PubMed  CAS  Google Scholar 

  4. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5:293–302.

    Article  PubMed  CAS  Google Scholar 

  5. Friedman MH, Hutchins GM, Bargeron CB, Deters OJ, Mark FF. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis. 1981;39:425–436.

    Article  PubMed  CAS  Google Scholar 

  6. LoGerfo FW, Nowak MD, Quist WC, Crawshaw HM, Bharadvaj BK. Flow studies in a model carotid bifurcation. Arteriosclerosis. 1981;1:235–241.

    Article  PubMed  CAS  Google Scholar 

  7. Motomiya M, Karino T. Flow patterns in the human carotid artery bifurcation. Stroke. 1984;15:50–56.

    Article  PubMed  CAS  Google Scholar 

  8. Liepsch D, Moravec S. Pulsatile flow of non-Newtonian fluid in distensible models of human arteries. Biorheology. 1984;21:571–586.

    PubMed  CAS  Google Scholar 

  9. Cho YI, Back LH, Crawford DW. Experimental investigation of branch, flow ratio, angle, and Reynolds number effects on the pressure and flow fields in arterial branch models. J Biomech Eng. 1985;107:257–267.

    Article  PubMed  CAS  Google Scholar 

  10. Back LH, Kwack EY, Crawford DW. Flow measurements in an atherosclerotic curved tapered femoral artery model of man. J Biomech Eng. 1988;110:310–319.

    Article  PubMed  CAS  Google Scholar 

  11. Mark FF, Bargeron CB, Deters OJ, Friedman MH. Variations in geometry and shear rate distribution in casts of human aortic bifurcations. J Biomech. 1989;22:577–582.

    Article  PubMed  CAS  Google Scholar 

  12. Duncan DD et al. The effect of compliance on wall shear in casts of a human aortic bifurcation. J Biomech Eng. 1990;112:183–188.

    Article  PubMed  CAS  Google Scholar 

  13. Levesque MJ, Nerem RM. The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng. 1985;107:341–347.

    Article  PubMed  CAS  Google Scholar 

  14. Mitsumata M, Fishel RS, Nerem RM, Alexander RW, Berk BC. Fluid shear stress stimulates platelet-derived growth factor expression in endothelial cells. Am J Physiol. 1993;265:H3–H8.

    PubMed  CAS  Google Scholar 

  15. Gonzales RS, Wick TM. Hemodynamic modulation of monocytic cell adherence to vascular endothelium. Ann Biomed Eng. 1996;24:382–393.

    Article  PubMed  CAS  Google Scholar 

  16. Tsao PS, Lewis NP, Alpert S, Cooke JP. Exposure to shear stress alters endothelial adhesiveness: role of nitric oxide. Circulation. 1995;92:3513–3519.

    PubMed  CAS  Google Scholar 

  17. Barbato JE, Τseng Ε. Nitric oxide and arterial disease. J Vasc Surg. 2004;40:187–193.

    Article  Google Scholar 

  18. Anayiotos AS, Jones SA, Giddens DP, Glagov S, Zarins CK. Shear stress at a compliant model of the human carotid bifurcation. J Biomech Eng. 1994;116:98–106.

    Article  PubMed  CAS  Google Scholar 

  19. Perktold K, Resch M, Peter RO. Three-dimensional numerical analysis of pulsatile flow and WSS in the carotid artery bifurcation. J Biomech. 1991;24:409–420.

    Article  PubMed  CAS  Google Scholar 

  20. Perktold K, Peter RO, Resch M, Langs G. Pulsatile non-Newtonian blood flow in three-dimensional carotid bifurcation models: a numerical study of flow phenomena under different bifurcation angles. J Biomed Eng. 1991;13:507–515.

    Article  PubMed  CAS  Google Scholar 

  21. Perktold K, Resch M, Florian H. Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. J Biomech Eng. 1991;113:464–475.

    Article  PubMed  CAS  Google Scholar 

  22. Perktold K, Rappitsch G. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech. 1995;28:845–856.

    Article  PubMed  CAS  Google Scholar 

  23. Delfino A. Analysis of Stress Field in a Model of the Human Carotid Bifurcation [Ph.D. thesis]. Lausanne: Ecole Polytechnique Federale de Lausanne; 1996.

    Google Scholar 

  24. Wells DR, Archie JP Jr, Kleinstreuer C. Effect of carotid artery geometry on the magnitude and distribution of WSS gradients. J Vasc Surg. 1996;23:667–678.

    Article  PubMed  CAS  Google Scholar 

  25. Axel L, Morton D. MR flow imaging by velocity compensated/uncompensated difference images. J Comput Assist Tomogr. 1987;11:31–34.

    Article  PubMed  CAS  Google Scholar 

  26. Scarabino T et al. MR angiography in carotid stenosis: a comparison of three techniques. Eur J Radiol. 1998;28(2):117–125.

    Article  PubMed  CAS  Google Scholar 

  27. Dumoulin CL, Hart HR. Magnetic resonance angiography. Radiology. 1986;161:717–720.

    PubMed  CAS  Google Scholar 

  28. Bryant DJ, Payne JA, Firmin DN, Longmore DB. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr. 1984;8:588–593.

    Article  PubMed  CAS  Google Scholar 

  29. Dumoulin CL, Doorly DJ, Caro CG. Quantitative measurement of velocity at multiple positions using comb excitation and Fourier velocity encoding. Magn Reson Med. 1993;29:44–52.

    Article  PubMed  CAS  Google Scholar 

  30. Firmin DN, Nayler GL, Kilner PJ, Longmore DB. The application of phase shifts in NMR for flow measurement. Magn Reson Med. 1990;14(2):230–241.

    Article  PubMed  CAS  Google Scholar 

  31. Buonocore MH, Bogren H. Factors influencing the accuracy and precision of velocity-encoded phase imaging. Magn Reson Med. 1992;26:141–154.

    Article  PubMed  CAS  Google Scholar 

  32. Frydrychowicz A et al. Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI. J Magn Reson Imaging. 2009;30(1):77–84.

    Article  PubMed  Google Scholar 

  33. Thomas JB et al. Variation in the carotid bifurcation geometry of young versus older adults implications for geometric risk of atherosclerosis. Stroke. 2005;36:2450–2456.

    Article  PubMed  Google Scholar 

  34. Fisher M, Sotak CH, Minematsu K, Li L. New magnetic resonance techniques for evaluating cerebrovascular disease. Ann Neurol. 1992;32:115–122.

    Article  PubMed  CAS  Google Scholar 

  35. Riles T et al. Comparison of magnetic resonance angiography, conventional angiography, and duplex scanning. Stroke. 1992;23:341–346.

    Article  PubMed  CAS  Google Scholar 

  36. Taylor CA et al. Predictive medicine: computational techniques in therapeutic decision-making. Comput Aided Surg. 1999;4(5):231–247.

    Article  PubMed  CAS  Google Scholar 

  37. Botnar R et al. Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. J Biomech. 2000;33:137–144.

    Article  PubMed  CAS  Google Scholar 

  38. Papaharilaou Y, Doorly DJ, Sherwin SJ. The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis. J Biomech. 2002;35:1225–1239.

    Article  PubMed  CAS  Google Scholar 

  39. Cebral JR, Yim PJ, Lohner R, Soto O, Choyke PL. Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging. Acad Radiol. 2002;9:1286–1299.

    Article  PubMed  Google Scholar 

  40. Steinman DA et al. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn Reson Med. 2002;47:149–159.

    Article  PubMed  Google Scholar 

  41. Zhao SZ, Papathanasopoulou P, Long Q, Marshall I, Xu XY. Comparative study of magnetic resonance imaging and image-based computational fluid dynamics for quantification of pulsatile flow in a carotid bifurcation phantom. Ann Biomed Eng. 2003;31(8):962–971.

    Article  PubMed  CAS  Google Scholar 

  42. Glor FP et al. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Ann Biomed Eng. 2003;2:142–151.

    Article  Google Scholar 

  43. Tardy Y, Resnick N, Nagel T, Gimbrone MA Jr, Dewey CF Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler Thromb Vasc Biol. 1997;17:3102–3106.

    Article  PubMed  CAS  Google Scholar 

  44. White CR, Haidekker M, Bao X, Frangos JA. Temporal gradients in shear, but not spatial gradients, stimulate endothelial cell proliferation. Circulation. 2001;103:2508–2513.

    PubMed  CAS  Google Scholar 

  45. Caro CG, Fitz-Gerald JM, Schroeter RC. Arterial wall shear stress and distribution of early atheroma in man. Nature. 1969;223:1159–1161.

    Article  PubMed  CAS  Google Scholar 

  46. Traub O, Berk BC. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol. 1998;18:677–685.

    Article  PubMed  CAS  Google Scholar 

  47. Caro CG, Nerem RM. Transport of 14C-cholesterol between serum and wall in perfused dog common carotid artery. Circ Res. 1973;32:187–194.

    PubMed  CAS  Google Scholar 

  48. Caro CG. Transport of 14C-4-cholesterol between perfusing serum and dog common carotid artery: a shear dependent process. Cardiovasc Res. 1974;8:194–203.

    Article  PubMed  CAS  Google Scholar 

  49. Deng X et al. Luminal surface concentration of lipoprotein (LDL) and its effect on the wall uptake of cholesterol by canine carotid arteries. J Vasc Surg. 1995;21:135–145.

    Article  PubMed  CAS  Google Scholar 

  50. Zarins CK, Zatina MA, Giddens DP, Ku DN, Glagov S. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vasc Surg. 1987;5:413–420.

    PubMed  CAS  Google Scholar 

  51. He X, Ku DN. Unsteady entrance flow development in a straight tube. J Biomech Eng. 1994;116:355–360.

    Article  PubMed  CAS  Google Scholar 

  52. Papaharilaou Y et al. Combined MR imaging and numerical simulation of flow in realistic arterial bypass graft models. Biorheology. 2002;39(3-4):525–532.

    PubMed  CAS  Google Scholar 

  53. Moore JA, Steinman DA, Prakash S, Johnston KW, Ethier CR. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. J Biomech Eng. 1999;121:265–272.

    Article  PubMed  CAS  Google Scholar 

  54. Himburg HA et al. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart Circ Physiol. 2004;286(5):H1916–H1922.

    Article  PubMed  CAS  Google Scholar 

  55. Himburg HA, Friedman MH. Correspondence of low mean shear and high harmonic content in the porcine iliac arteries. J Biomech Eng. 2006;128(6):852–856.

    Article  PubMed  Google Scholar 

  56. Hyun S, Kleinstreuer C, Longest PW, Chen C. Particle-hemodynamics simulations and design options for surgical reconstruction of diseased carotid artery bifurcations. J Biomech Eng. 2004;126(2):188–195.

    Article  PubMed  CAS  Google Scholar 

  57. Gelfand BD, Epstein FH, Blackman BR. Spatial and spectral heterogeneity of time-varying shear stress profiles in the carotid bifurcation by phase-contrast MRI. J Magn Reson Imaging. 2006;24(6):1386–1392.

    Article  Google Scholar 

  58. Lee SW, Antiga L, Steinman DA. Correlations among indicators of disturbed flow at the normal carotid bifurcation. J Biomech Eng. 2009;131(6):061013.

    Article  PubMed  Google Scholar 

  59. Antiga L, Steinman D. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans Med Imaging. 2004;23(6):704–713.

    Article  PubMed  Google Scholar 

  60. Lee SW, Antiga L, Spence JD, Steinman DA. Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke. 2008;39(8):2341–2347.

    Article  PubMed  Google Scholar 

  61. Zhang Q, Steinman DA, Friedman MH. Prediction of disturbed flow by factor analysis of carotid bifurcation geometry. In: Proceedings of the ASME 2009 Summer Bioengineering Conference; June 17–21, 2009; Lake Tahoe. Abstract no. 204798.

    Google Scholar 

  62. Taylor CA, Draney MT. Experimental and computational methods in cardiovascular fluid mechanics. Annu Rev Fluid Mech. 2004;36:197–231.

    Article  Google Scholar 

  63. Steinman DA, Taylor CA. Flow imaging and computing: large artery hemodynamics. Ann Biomed Eng. 2005;33:1704–1709.

    Article  PubMed  Google Scholar 

  64. Cheng CP, Wilson NM, Hallett RL, Herfkens RJ, Taylor CA. In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J Vasc Interv Radiol. 2006;17:979–987.

    Article  PubMed  Google Scholar 

  65. Glor FP et al. Influence of head position on carotid hemodynamics in young adults. Am J Physiol Heart Circ Physiol. 2004;287:H1670-H1681.

    Article  PubMed  CAS  Google Scholar 

  66. Aristokleous N, et al. Effect of posture change on the geometric features of the healthy carotid bifurcation. IEEE Transactions of Information Technology in Biomedicine. 2011;15:148–154.

    Google Scholar 

  67. Papaharilaou Y, et al. Effect of head posture changes in the geometry and hemodynamics of a healthy human carotid bifurcation. In: Summer Bioengineering Conference; June 2007; Keystone.

    Google Scholar 

  68. Mitsumori LM et al. In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J Magn Reson Imaging. 2003;17:410–420.

    Article  PubMed  Google Scholar 

  69. Valibhoy AR, Mwipatayi BP, Sieunarine K. Fracture of a carotid stent: an unexpected complication. J Vasc Surg. 2007;45:603–606.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Anayiotos, A., Papaharilaou, Y. (2011). Vascular Hemodynamics of the Carotid Bifurcation and Its Relation to Arterial Disease. In: Nicolaides, A., Beach, K., Kyriacou, E., Pattichis, C. (eds) Ultrasound and Carotid Bifurcation Atherosclerosis. Springer, London. https://doi.org/10.1007/978-1-84882-688-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-688-5_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-687-8

  • Online ISBN: 978-1-84882-688-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics