Skip to main content

Plaque Feature Extraction

  • Chapter
  • First Online:
Ultrasound and Carotid Bifurcation Atherosclerosis

Abstract

Feature extraction is a critical step in any pattern classification system. In order for the pattern recognition process to be tractable, it is necessary to convert patterns into features, which are condensed representations of the patterns, containing only salient information. Features contain the characteristics of a pattern in a comparable form making the pattern classification possible. The extraction of “good” features from the signal patterns and the selection from them of the ones with the most discriminatory power is very crucial for the success of the classification process. The feature extraction and selection is a dimensionality reduction process that is necessary in order to meet software and hardware constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christodoulou CI, Pattichis CS, Pantziaris M, Nicolaides A. Texture based classification of atherosclerotic carotid plaques. IEEE Trans Med Imaging. 2003;22(7):902–912.

    Article  PubMed  CAS  Google Scholar 

  2. Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989;19(5):1264–1274.

    Article  Google Scholar 

  3. El-Barghouty N, Geroulakos G, Nicolaides A, Androulakis A, Bahal V. Computer assisted carotid plaque characterisation. Eur J Vasc Endovasc Surg. 1995;9: 548–557.

    Google Scholar 

  4. Biasi GM et al. Plaque characterization using digital image processing and its potential in future studies of carotid endarterectomy and angioplasty. J Endovasc Surg. 1998;5:240–246.

    Article  PubMed  CAS  Google Scholar 

  5. Elatrozy T, Nicolaides A, Tegos T, Griffin M. The objective characterization of ultrasonic carotid plaque features. Eur J Vasc Endovasc Surg. 1998;26:223–230.

    Article  Google Scholar 

  6. Tegos TJ et al. Echomorphologic and histopathologic characteristics of unstable carotid plaques. Am J Neuroradiol. 2000;21:1937–1944.

    PubMed  CAS  Google Scholar 

  7. Biasi GM et al. Carotid plaque echolucency increases the risk of stroke in carotid stenting The Imaging in Carotid Angioplasty and Risk of Stroke (ICAROS) Study. Circulation. 2004;110:756–762.

    Article  PubMed  Google Scholar 

  8. Lal BK et al. Pixel distribution analysis of B-mode ultrasound scan images predicts histologic features of atherosclerotic carotid plaques. J Vasc Surg. 2002;35:1210–1217.

    Article  PubMed  Google Scholar 

  9. Lal BK et al. Noninvasive identification of the unstable carotid plaque. Ann Vasc Surg. 2006;20:167–174.

    Article  PubMed  Google Scholar 

  10. Sztajzel R et al. Stratified gray-scale median analysis and color mapping of the carotid plaque. Stroke. 2005;36: 741–745.

    Article  PubMed  CAS  Google Scholar 

  11. Madycki G, Staszkiewicz W, Gabrusiewicz A. Carotid plaque texture analysis can predict the incidence of silent brain infarcts among patients undergoing carotid endarterectomy. Eur J Vasc Endovasc Surg. 2006;31:373–380.

    Article  PubMed  CAS  Google Scholar 

  12. Hashimoto H, Takaya M, Niki H, Etani H. Computer-assisted analysis of heterogeneity on B-mode imaging predicts instability of asymptomatic carotid plaque. Cerebrovasc Dis. 2009;28:357–364.

    Article  PubMed  Google Scholar 

  13. Prahl U et al. Percentage white: a new feature for ultrasound classification of plaque echogenicity in carotid artery atherosclerosis. Ultrasound Med Biol. 2010;36(2):218–226.

    Article  PubMed  Google Scholar 

  14. Kakkos SK et al. Texture analysis of ultrasonic images of symptomatic carotid plaques can identify those plaques associated with ipsilateral embolic brain infarction. Eur J Vasc Endovasc Surg. 2007;33(4):422–429.

    Article  PubMed  CAS  Google Scholar 

  15. Kakkos SK et al. Computerised texture analysis of carotid plaque ultrasonic images can identify unstable plaques associated with ipsilateral neurological symptoms. Angiology. 2011;62(4):317–328.

    Article  PubMed  Google Scholar 

  16. Christodoulou CI, Pattichis CS, Kyriacou E, Nicolaides A. Image retrieval and classification of carotid plaque ultrasound images. Open Cardiovasc Imaging J. 2010;2:18–28.

    Article  Google Scholar 

  17. Johnsen SH et al. Elevated high-density lipoprotein cholesterol levels are protective against plaque progression: a follow-up study of 1952 persons with carotid atherosclerosis the Tromsø study. Circulation. 2005;112:498–504.

    Article  PubMed  CAS  Google Scholar 

  18. Johnsen SH et al. Carotid atherosclerosis is a stronger predictor of myocardial infarction in women than in men a 6-year follow-up study of 6226 persons: the Tromsø study. Stroke. 2007;38:2873–2880.

    Article  PubMed  Google Scholar 

  19. Griffin M et al. Juxtaluminal hypoechoic area in ultrasonic images of carotid plaques and hemispheric symptoms. J Vasc Surg. 2010;52(1):69–76.

    Article  PubMed  Google Scholar 

  20. Wilhjelm JE et al. Quantitative analysis of ultrasound Bmode images of carotid atherosclerotic plaque: correlation with visual classification and histological examination. IEEE Trans Med Imaging. 1998;17(6):910–922.

    Article  PubMed  CAS  Google Scholar 

  21. Mougiakakou S, Golemati S, Gousias I, Nicolaides A, Nikita KS. Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, Laws’ texture and neural networks. Ultrasound Med Biol. 2007; 33(1):26–36.

    Article  PubMed  Google Scholar 

  22. Kyriacou E et al. Classification of atherosclerotic carotid plaques using morphological analysis on ultrasound images. Appl Intell. 2009;30:3–23.

    Article  Google Scholar 

  23. Asvestas P, Golemati S, Matsopoulos GK, Nikita KS, Nikolaides AN. Fractal dimension estimation of carotid atherosclerotic plaques from B-mode ultrasound. Ultrasound Med Biol. 2002;28(9):1129–1136.

    Article  PubMed  Google Scholar 

  24. Christodoulou CI, Pattichis CS, Murray V, Pattichis MS, Nicolaides A. AM-FM representations for the characterization of carotid plaque ultrasound images. MBEC’08 4th European Conference of the International Federation for Medical and Biological Engineering; November 23–28, 2008; Antwerp.

    Google Scholar 

  25. Tsiaparas N, Golemati S, Andreadis I, Stoitsis J, Nikita KS. Comparison of multiresolution features for texture classification of carotid atherosclerosis from B-mode ultrasound. IEEE Trans Inf Technol Biomed. 2011;15(1):130–137.

    Article  PubMed  Google Scholar 

  26. Meairs S, Hennerici M. Four-dimensional ultrasonographic characterization of plaque surface motion in patients with symptomatic and asymptomatic carotid artery stenosis. Stroke. 1999;30:1807–1813.

    Article  PubMed  CAS  Google Scholar 

  27. Murillo SE et al. Atherosclerotic plaque motion trajectory analysis from ultrasound videos. In: CD-Rom Proceedings of the 5th IEEE EMBS Special Topic Conference on Information Technology in Biomedicine; October 26–28, 2006; Ioannina-Epirus:5p.

    Google Scholar 

  28. Murray V., et al. An AM-FM model for motion estimation in atherosclerotic plaque videos. In: Proceedings of the 41st Asilomar Conference on Signals, Systems and Computers; 2007; Pacific Grove:746–750.

    Google Scholar 

  29. Gastounioti A, Golemati S, Stoitsis J, Nikita KS. Kalman filter based block matching for arterial wall motion from B-mode ultrasound. In: IEEE International Conference on Imaging Systems and Techniques (IST); July 1–2, 2010; Thessaloniki:234–239.

    Google Scholar 

  30. Landry A, Spence JD, Fenster A. Measurement of carotid plaque volume by 3-dimensional ultrasound. Stroke. 2004;35(4):864–869.

    Article  PubMed  Google Scholar 

  31. Chiu B, Egger M, Spence JD, Parraga G, Fenster A. Quantification of carotid vessel wall and plaque thickness change using 3D ultrasound images. Med Phys. 2008;35(8):3691–3710.

    Article  PubMed  Google Scholar 

  32. Chiu B, Egger M, Spence JD, Parraga G, Fenster A. Development of 3D ultrasound techniques for carotid artery disease assessment and monitoring. Int J Comput Assist Radiol Surg. 2008;3:1–10.

    Article  Google Scholar 

  33. Mallett C, House AA, Spence JD, Fenster A, Parraga G. Longitudinal ultrasound evaluation of carotid atherosclerosis in one, two and three dimensions. Ultrasound Med Biol. 2009;35(3):367–375.

    Article  PubMed  Google Scholar 

  34. Awad J, Krasinski A, Parraga G, Fenster A. Texture analysis of carotid artery atherosclerosis from three dimensional ultrasound images. Med Phys. 2010;37(4):1382–1391.

    Article  PubMed  Google Scholar 

  35. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical Recipes: The Art of Scientific Computing. Cambridge: Cambridge University Press; 1987.

    Google Scholar 

  36. Haralick RM, Shanmugam K, Dinstein I. Texture features for image classification. IEEE Trans Syst Man Cybern. 1973;SMC-3:610–621.

    Article  Google Scholar 

  37. Weszka JS, Dyer CR, Rosenfield A. A comparative study of texture measures for terrain classification. IEEE Trans Syst Man Cybern. 1976;SMC-6:269–285.

    Google Scholar 

  38. Wu CM, Chen Y-C. Statistical feature matrix for texture analysis. CVGIP Graphical Models Image Process. 1992;54(5):407–419.

    Article  Google Scholar 

  39. Laws KI. Rapid texture identification. SPIE. 1980;238:376–380.

    Google Scholar 

  40. Wu C-M, Chen Y-C, Hsieh K-S. Texture features for classification of ultrasonic liver images. IEEE Trans Med Imaging. 1992;11(3):141–152.

    PubMed  CAS  Google Scholar 

  41. Mandelbrot BB. The Fractal Geometry of Nature. San Francisco: Freeman; 1982.

    Google Scholar 

  42. Dougherty ER. An Introduction to Morphological Image Processing. Bellingham: SPIE Optical Engineering Press; 1992.

    Google Scholar 

  43. Dougherty ER, Astola J. An Introduction to Nonlinear Image Processing. Bellingham: SPIE Optical Engineering Press; 1994.

    Google Scholar 

  44. Marangos P. Pattern spectrum and multiscale shape representation. IEEE Trans Pattern Anal Mach Intell. 1989;11: 701–715.

    Article  Google Scholar 

  45. Ripley BD. Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press; 1996.

    Google Scholar 

  46. Haykin S. Neural Networks: A Comprehensive Foundation. New York: Macmillan College Publishing Company; 1994.

    Google Scholar 

  47. Polak J et al. Hypoechoic plaque at US of the carotid artery: an independent risk factor for incident stroke in adults aged 65 years or older. Radiology. 1998;208(3):649–654.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Christodoulou, C.I., Kyriacou, E., Pattichis, M.S., Pattichis, C.S. (2011). Plaque Feature Extraction. In: Nicolaides, A., Beach, K., Kyriacou, E., Pattichis, C. (eds) Ultrasound and Carotid Bifurcation Atherosclerosis. Springer, London. https://doi.org/10.1007/978-1-84882-688-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-688-5_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-687-8

  • Online ISBN: 978-1-84882-688-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics