Skip to main content

Automated Classification of Plaques

  • Chapter
  • First Online:
Ultrasound and Carotid Bifurcation Atherosclerosis

Abstract

Atherosclerotic plaques appear in the carotid artery with normal aging, and 60–90% of the population at 60 years of age has identifiable plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joakimsen O, Bonaa KH, Stensland-Bugge E, Jacobsen BK. Age and sex differences in the distribution and ultrasound morphology of carotid atherosclerosis: the Tromso Study. Arterioscler Thromb Vasc Biol. 1999;19(12): 3007–3013.

    Article  PubMed  CAS  Google Scholar 

  2. Spence JD. Technology insight: ultrasound measurement of carotid plaque – patient management, genetic research, and therapy evaluation. Nat Clin Pract Neurol. 2006;2(11): 611–619.

    Article  PubMed  Google Scholar 

  3. Ebrahim S et al. Carotid plaque, intima media thickness, cardiovascular risk factors, and prevalent cardiovascular disease in men and women: the British Regional Heart Study. Stroke. 1999;30(4):841–850.

    Article  PubMed  CAS  Google Scholar 

  4. van der Meer IM et al. Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam Study. Circulation. 2004;109(9):1089–1094.

    Article  PubMed  Google Scholar 

  5. Wyman RA, Mays ME, McBride PE, Stein JH. Ultrasound-detected carotid plaque as a predictor of cardiovascular events. Vasc Med. 2006;11(2):123–130.

    Article  PubMed  Google Scholar 

  6. Spence JD. Ultrasound measurement of carotid plaque as a surrogate outcome for coronary artery disease. Am J Cardiol. 2002;89(4A):10B-15B; discussion 15B-16B.

    Article  PubMed  Google Scholar 

  7. Sztajzel R, Momjian-Mayor I, Comelli M, Momjian S. Correlation of cerebrovascular symptoms and microembolic signals with the stratified gray-scale median analysis and color mapping of the carotid plaque. Stroke. 2006;37(3): 824–829.

    Article  PubMed  Google Scholar 

  8. Belcaro G et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: a 10-year follow-up study (the CAFES-CAVE study(1)). Atherosclerosis. 2001;156(2):379–387.

    Article  PubMed  CAS  Google Scholar 

  9. Gronholdt ML, Nordestgaard BG, Schroeder TV, Vorstrup S, Sillesen H. Ultrasonic echolucent carotid plaques predict future strokes. Circulation. 2001;104(1):68–73.

    Article  PubMed  CAS  Google Scholar 

  10. Kakkos SK et al. Texture analysis of ultrasonic images of symptomatic carotid plaques can identify those plaques associated with ipsilateral embolic brain infarction. Eur J Vasc Endovasc Surg. 2007;33(4):422–429.

    Article  PubMed  CAS  Google Scholar 

  11. Touboul PJ et al. Mannheim intima-media thickness consensus. Cerebrovasc Dis. 2004;18(4):346–349.

    Article  PubMed  Google Scholar 

  12. de Bray JM, Baud JM, Daudzat M. Consensus concerning the morphology and the risk of carotid plaques. Cerebrovasc Dis. 1997;7:289–296.

    Article  Google Scholar 

  13. Urbani MP et al. In vivo radiofrequency-based ultrasonic tissue characterization of the atherosclerotic plaque. Stroke. 1993;24(10):1507–1512.

    Article  PubMed  CAS  Google Scholar 

  14. el-Barghouty N, Geroulakos G, Nicolaides A, Androulakis A, Bahal V. Computer-assisted carotid plaque characterisation. Eur J Vasc Endovasc Surg. 1995;9(4): 389–393.

    Article  PubMed  CAS  Google Scholar 

  15. Wilhjelm JE et al. Quantitative analysis of ultrasound B-mode images of carotid atherosclerotic plaque: correlation with visual classification and histological examination. IEEE Trans Med Imaging. 1998;17(6):910–922.

    Article  PubMed  CAS  Google Scholar 

  16. Aly S, Bishop CC. An objective characterization of atherosclerotic lesion: an alternative method to identify unstable plaque. Stroke. 2000;31(8):1921–1924.

    Article  PubMed  CAS  Google Scholar 

  17. Pedro LM et al. Computer-assisted carotid plaque analysis: characteristics of plaques associated with cerebrovascular symptoms and cerebral infarction. Eur J Vasc Endovasc Surg. 2000;19(2):118–123.

    Article  PubMed  CAS  Google Scholar 

  18. Takiuchi S et al. Quantitative ultrasonic tissue characterization can identify high-risk atherosclerotic alteration in human carotid arteries. Circulation. 2000;102(7):766–770.

    PubMed  CAS  Google Scholar 

  19. Christodoulou CI, Pattichis CS, Pantziaris M, Nicolaides A. Texture-based classification of atherosclerotic carotid plaques. IEEE Trans Med Imaging. 2003;22(7):902–912.

    Article  PubMed  CAS  Google Scholar 

  20. Stoitsis J, Tsiaparas N, Golemati S, Nikita KS. Characterization of carotid atherosclerotic plaques using frequency-based texture analysis and bootstrap. Conf Proc IEEE Eng Med Biol Soc. 2006;1:2392–2395.

    Article  PubMed  CAS  Google Scholar 

  21. Prahl U et al. Percentage white: a new feature for ultrasound classification of plaque echogenicity in carotid artery atherosclerosis. Ultrasound Med Biol. 2010;36(2) 218–226.

    Article  PubMed  Google Scholar 

  22. Jain AK, Duin RPW, Mao J. Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell. 2000;2(1):4–37.

    Article  Google Scholar 

  23. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;3(6):610–621.

    Article  Google Scholar 

  24. Duda RO, Hart PE, Stork DG. Pattern Classification. New York: Wiley; 2001.

    Google Scholar 

  25. Griffin M, Nicolaides A, Kyriacou E. Normalisation of ultrasonic images of atherosclerotic plaques and reproducibility of grey scale median using dedicated software. Int Angiol. 2007;26(4):372–377.

    PubMed  CAS  Google Scholar 

  26. Loizou CP et al. Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(10): 1653–1669.

    Article  PubMed  Google Scholar 

  27. Persson J et al. Noninvasive quantification of atherosclerotic lesions. Reproducibility of ultrasonographic measurement of arterial wall thickness and plaque size. Arterioscler Thromb. 1992;12(2):261–266.

    Article  PubMed  CAS  Google Scholar 

  28. Kofoed SC, Gronholdt ML, Wilhjelm JE, Bismuth J, Sillesen H. Real-time spatial compound imaging improves reproducibility in the evaluation of atherosclerotic carotid plaques. Ultrasound Med Biol. 2001;27(10):1311–1317.

    Article  PubMed  CAS  Google Scholar 

  29. Wendelhag I, Liang Q, Gustavsson T, Wikstrand J. A new automated computerized analyzing system simplifies readings and reduces the variability in ultrasound measurement of intima-media thickness. Stroke. 1997;28(11):2195–2200.

    Article  PubMed  CAS  Google Scholar 

  30. Liang Q, Wendelhag I, Wikstrand J, Gustavsson T. A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images. IEEE Trans Med Imaging. 2000;19(2):127–142.

    Article  PubMed  CAS  Google Scholar 

  31. Delsanto S et al. User-independent plaque characterization and accurate IMT measurement of carotid artery wall using ultrasound. Conf Proc IEEE Eng Med Biol Soc. 2006;1:2404–2407.

    Article  PubMed  Google Scholar 

  32. Loizou C, Pattichis C, Pantziaris M, Nicolaides A. An integrated system for the segmentation of atherosclerotic carotid plaque. IEEE Trans Inf Technol Biomed. 2007; 11(6):661–667.

    Article  PubMed  Google Scholar 

  33. Boykov Y, Funka-Lea G. Graph cuts and efficient n-d image segmentation. Int J Comput Vis. 2006;70(2):109–131.

    Article  Google Scholar 

  34. Egger M, Spence JD, Fenster A, Parraga G. Validation of 3D ultrasound vessel wall volume: an imaging phenotype of carotid atherosclerosis. Ultrasound Med Biol. 2007;33(6):905–914.

    Article  PubMed  Google Scholar 

  35. Wolverson MK, Bashiti HM, Peterson GJ. Ultrasonic tissue characterization of atheromatous plaques using a high resolution real time scanner. Ultrasound Med Biol. 1983;9(6):599–609.

    Article  PubMed  CAS  Google Scholar 

  36. Elatrozy T, Nicolaides A, Tegos T, Griffin M. The objective characterisation of ultrasonic carotid plaque features. Eur J Vasc Endovasc Surg. 1998;16(3):223–230.

    Article  PubMed  CAS  Google Scholar 

  37. el-Barghouty N, Nicolaides A, Bahal V, Geroulakos G, Androulakis A. The identification of the high risk carotid plaque. Eur J Vasc Endovasc Surg. 1996;11(4):470–478.

    Article  PubMed  CAS  Google Scholar 

  38. Wijeyaratne SM et al. A new method for characterizing carotid plaque: multiple cross-sectional view echomorphology. J Vasc Surg. 2003;37(4):778–784.

    Article  PubMed  CAS  Google Scholar 

  39. Asvestas P, Golemati S, Matsopoulos GK, Nikita KS, Nicolaides AN. Fractal dimension estimation of carotid atherosclerotic plaques from B-mode ultrasound: a pilot study. Ultrasound Med Biol. 2002;28(9):1129–1136.

    Article  PubMed  Google Scholar 

  40. Johnson JM, Kennelly MM, Decesare D, Morgan S, Sparrow A. Natural history of asymptomatic carotid plaque. Arch Surg. 1985;120(9):1010–1012.

    PubMed  CAS  Google Scholar 

  41. Sterpetti AV et al. Ultrasonographic features of carotid plaque and the risk of subsequent neurologic deficits. Surgery. 1988;104(4):652–660.

    PubMed  CAS  Google Scholar 

  42. Langsfeld M, Gray-Weale AC, Lusby RJ. The role of plaque morphology and diameter reduction in the development of new symptoms in asymptomatic carotid arteries. J Vasc Surg. 1989;9(4):548–557.

    PubMed  CAS  Google Scholar 

  43. Bock RW et al. The natural history of asymptomatic carotid artery disease. J Vasc Surg. 1993;17(1):160–169.

    Article  PubMed  CAS  Google Scholar 

  44. Belcaro G et al. Ultrasonic classification of carotid plaques causing less than 60% stenosis according to ultrasound morphology and events. J Cardiovasc Surg (Torino). 1993;34(4):287–294.

    CAS  Google Scholar 

  45. Liapis CD, Kakisis JD, Kostakis AG. Carotid stenosis: factors affecting symptomatology. Stroke. 2001;32(12):2782–2786.

    Article  PubMed  CAS  Google Scholar 

  46. Mathiesen EB, Bonaa KH, Joakimsen O. Echolucent plaques are associated with high risk of ischemic cerebrovascular events in carotid stenosis: the Tromso study. Circulation. 2001;103(17):2171–2175.

    PubMed  CAS  Google Scholar 

  47. Sztajzel R. Ultrasonographic assessment of the morphological characteristics of the carotid plaque. Swiss Med Wkly. 2005;135(43–44):635–643.

    PubMed  Google Scholar 

  48. Biasi GM et al. Computer analysis of ultrasonic plaque echolucency in identifying high risk carotid bifurcation lesions. Eur J Vasc Endovasc Surg. 1999;17(6):476–479.

    Article  PubMed  CAS  Google Scholar 

  49. Matsagas MI et al. Computer-assisted ultrasonographic analysis of carotid plaques in relation to cerebrovascular symptoms, cerebral infarction, and histology. Ann Vasc Surg. 2000;14(2):130–137.

    Article  PubMed  CAS  Google Scholar 

  50. Hashimoto H, Tagaya M, Niki H, Etani H. Computer-assisted analysis of heterogeneity on B-mode imaging predicts instability of asymptomatic carotid plaque. Cerebrovasc Dis. 2009;28(4):357–364.

    Article  PubMed  Google Scholar 

  51. Reiter M et al. Increasing carotid plaque echolucency is predictive of cardiovascular events in high-risk patients. Radiology. 2008;248(3):1050–1055.

    Article  PubMed  Google Scholar 

  52. Fosse E et al. Repeated visual and computer-assisted carotid plaque characterization in a longitudinal population-based ultrasound study: the Tromso study. Ultrasound Med Biol. 2006;32(1):3–11.

    Article  PubMed  Google Scholar 

  53. Nicolaides A et al. Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification. J Vasc Surg. 2010;52(6):1486–1496.

    Article  PubMed  Google Scholar 

  54. Waki H et al. Ultrasonic tissue characterization of the atherosclerotic carotid artery: histological correlates or carotid integrated backscatter. Circ J. 2003;67(12):1013–1016.

    Article  PubMed  Google Scholar 

  55. Hirano M et al. Rapid improvement of carotid plaque echogenicity within 1 month of pioglitazone treatment in patients with acute coronary syndrome. Atherosclerosis. 2009;203(2):483–488.

    Article  PubMed  CAS  Google Scholar 

  56. Nagano K et al. Quantitative evaluation of carotid plaque echogenicity by integrated backscatter analysis: correlation with symptomatic history and histologic findings. Cerebrovasc Dis. 2008;26(6):578–583.

    Article  PubMed  Google Scholar 

  57. Yamada K et al. Effects of atorvastatin on carotid atherosclerotic plaques: a randomized trial for quantitative tissue characterization of carotid atherosclerotic plaques with integrated backscatter ultrasound. Cerebrovasc Dis. 2009;28(4):417–424.

    Article  PubMed  CAS  Google Scholar 

  58. Stoitsis J, Golemati S, Nikita KS, Nicolaides AN. Characterization of carotid atherosclerosis based on motion and texture features and clustering using fuzzy C-means. Conf Proc IEEE Eng Med Biol Soc. 2004;2:1407–1410.

    PubMed  CAS  Google Scholar 

  59. Stoitsis J, Golemati S, Tsiaparas N, Nikita KS. Texture characterization of carotid atherosclerotic plaque from B-mode ultrasound using gabor filters. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:455–458.

    PubMed  Google Scholar 

  60. Gray-Weale AC, Graham JC, Burnett JR, Byrne K, Lusby RJ. Carotid artery atheroma: comparison of preoperative B-mode ultrasound appearance with carotid endarterectomy specimen pathology. J Cardiovasc Surg (Torino). 1988;29(6):676–681.

    CAS  Google Scholar 

  61. Brohall G, Behre CJ, Hulthe J, Wikstrand J, Fagerberg B. Prevalence of diabetes and impaired glucose tolerance in 64-year-old Swedish women: experiences of using repeated oral glucose tolerance tests. Diabetes Care. 2006;29(2): 363–367.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bergström, G.M., Prahl, U., Holdfeldt, P. (2011). Automated Classification of Plaques. In: Nicolaides, A., Beach, K., Kyriacou, E., Pattichis, C. (eds) Ultrasound and Carotid Bifurcation Atherosclerosis. Springer, London. https://doi.org/10.1007/978-1-84882-688-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-688-5_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-687-8

  • Online ISBN: 978-1-84882-688-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics