Skip to main content

Stable and Vulnerable Atherosclerotic Plaques

  • Chapter
  • First Online:
Ultrasound and Carotid Bifurcation Atherosclerosis

Abstract

Atherosclerosis is a chronic, systemic, inflammatory disease of the medium and large arteries such as the coronary, carotid and peripheral arteries, and the aorta. It is currently considered a major contributor to the development of cardiovascular disease, the leading cause of death in the United States1 and worldwide.2 Atherosclerotic plaques are characterized by intimal thickening from the progressive accumulation of lipids (mainly cholesteryl ester and cholesterol)3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lloyd-Jones D et al. Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):480–486.

    PubMed  Google Scholar 

  2. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet. 1997;349(9063):1436–1442.

    PubMed  CAS  Google Scholar 

  3. Anitschkow N. Über die Veränderungen der Kaninchenaorta bei experimenteller Cholesterinsteatose. Beiträge zur Pathologischen Anatomie und zur Allgemeinen Pathologie. 1913;56:379–404.

    Google Scholar 

  4. Small DM. Progression and regression of atherosclerotic lesions: insights from lipid physical biochemistry. Atherosclerosis. 1988;8:103–129.

    CAS  Google Scholar 

  5. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med. 1999;340(2):115–126.

    PubMed  CAS  Google Scholar 

  6. Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233–241.

    PubMed  CAS  Google Scholar 

  7. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–874.

    PubMed  CAS  Google Scholar 

  8. Poredos P. Endothelial dysfunction in the pathogenesis of atherosclerosis. Clin Appl Thromb Hemost. 2001;7(4):276–280.

    PubMed  CAS  Google Scholar 

  9. Virchow R. Phlogose und thrombose im gefassystem. Gesammelte abhandlungen zur wissenschaftlichen medicin. Frankfurt: Meidinger Sohn and Co; 1856:458.

    Google Scholar 

  10. Ross R, Glomset JA. The pathogenesis of atherosclerosis (first of two parts). N Engl J Med. 1976;295(7):369–377.

    PubMed  CAS  Google Scholar 

  11. Ross R, Glomset JA. The pathogenesis of atherosclerosis (second of two parts). N Engl J Med. 1976;295(8):420–425.

    PubMed  CAS  Google Scholar 

  12. Ludmer PL et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315(17):1046–1051.

    PubMed  CAS  Google Scholar 

  13. Gimbrone MA Jr. Endothelial dysfunction and atherosclerosis. J Card Surg. 1989;4(2):180–183.

    PubMed  Google Scholar 

  14. Lusis AJ. Stable and vulnerable atherosclerotic plaques. Nature. 2000;407(6801):233–241.

    PubMed  CAS  Google Scholar 

  15. Shah PK. Pathophysiology of plaque rupture and the concept of plaque stabilization. Cardiol Clin. 2003;21(3):303–314, v.

    PubMed  Google Scholar 

  16. Stary HC et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol. 1995;15(9):1512–1531.

    PubMed  CAS  Google Scholar 

  17. Stary HC et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1995;92(5):1355–1374.

    PubMed  CAS  Google Scholar 

  18. Stary HC. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol. 2000;20(5):1177–1178.

    PubMed  CAS  Google Scholar 

  19. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–1275.

    PubMed  CAS  Google Scholar 

  20. Burke AP, Virmani R, Galis Z, Haudenschild CC, Muller JE. 34th Bethesda conference: task force #2 – what is the pathologic basis for new atherosclerosis imaging techniques? J Am Coll Cardiol. 2003;41(11):1874–1886.

    PubMed  Google Scholar 

  21. Stary HC. Composition and classification of human atherosclerotic lesions. Virchows Arch A Pathol Anat Histopathol. 1992;421(4):277–290.

    PubMed  CAS  Google Scholar 

  22. Hamilton JA, Cordes EH, Glueck CJ. Lipid dynamics in human low-density lipoproteins and human fibrous plaques: a study by high field 13C NMR. J Biol Chem. 1979;254:5435–5441.

    PubMed  CAS  Google Scholar 

  23. Napoli C et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest. 1997;100(11):2680–2690.

    PubMed  CAS  Google Scholar 

  24. Khalil MF, Wagner WD, Goldberg IJ. Molecular interactions leading to lipoprotein retention and the initiation of atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(12):2211–2218.

    PubMed  CAS  Google Scholar 

  25. Navab M et al. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol. 1996;16(7):831–842.

    PubMed  CAS  Google Scholar 

  26. Dong ZM et al. The combined role of P- and E-selectins in atherosclerosis. J Clin Invest. 1998;102(1):145–152.

    PubMed  CAS  Google Scholar 

  27. Cybulsky MI, Gimbrone MA Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991;251(4995):788–791.

    PubMed  CAS  Google Scholar 

  28. Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr Opin Immunol. 2002;14(1):123–128.

    PubMed  CAS  Google Scholar 

  29. Podrez EA et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest. 2000;105(8):1095–1108.

    PubMed  CAS  Google Scholar 

  30. Hansson GK. Inflammation, atherosclersosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–1695.

    PubMed  CAS  Google Scholar 

  31. Hillman GM, Engelman DM. Compositional mapping of cholesteryl ester droplets in the fatty streaks of human aorta. J Clin Invest. 1976;58(4):1008–1018.

    PubMed  CAS  Google Scholar 

  32. Engelman DM, Hillman GM. Molecular organization of the cholesteryl ester droplets in the fatty streaks of human aorta. J Clin Invest. 1976;58(4):997–1007.

    PubMed  CAS  Google Scholar 

  33. Katz SS, Shipley GG, Small DM. Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. J Clin Invest. 1976;58(1):200–211.

    PubMed  CAS  Google Scholar 

  34. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis. 1986;6(2):131–138.

    PubMed  CAS  Google Scholar 

  35. Demer LL, Tintut Y. Osteopontin. Between a rock and a hard plaque. Circ Res. 1999;84(2):250–252.

    PubMed  CAS  Google Scholar 

  36. Wexler L et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications: a statement for health professionals from the American Heart Association. Circulation. 1996;94(5):1175–1192.

    PubMed  CAS  Google Scholar 

  37. Davies M, Thomas A. Plaque fissuring – the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J. 1985;53(4):363–373.

    PubMed  CAS  Google Scholar 

  38. Davies MJ. Stability and instability: two faces of coronary atherosclerosis: the Paul Dudley White Lecture 1995. Circulation. 1996;94(8):2013–2020.

    PubMed  CAS  Google Scholar 

  39. Farb A et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation. 1996;93(7):1354–1363.

    PubMed  CAS  Google Scholar 

  40. Burke AP et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336(18):1276–1282.

    PubMed  CAS  Google Scholar 

  41. Muller JE, Abela GS, Nesto RW, Tofler GH. Triggers, acute risk factors and vulnerable plaques: the lexicon of a new frontier. J Am Coll Cardiol. 1994;23(3):809–813.

    PubMed  CAS  Google Scholar 

  42. Muller JE, Moreno PR. Definition of the vulnerable plaque. In: Waksman R, Serruys PW, eds. Handbook of the Vulnerable Plaque. 2nd ed. London: Taylor & Francis; 2004:1–13.

    Google Scholar 

  43. Falk E. Why do plaques rupture? Circulation. 1992;86(6 suppl):III30-III42.

    PubMed  CAS  Google Scholar 

  44. Libby P. Molecular bases of the acute coronary syndromes. Circulation. 1995;91(11):2844–2850.

    PubMed  CAS  Google Scholar 

  45. Kolodgie FD et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol. 2001;16(5):285–292.

    PubMed  CAS  Google Scholar 

  46. Fraergeman O. Coronary Artery Disease: Genes, Drugs and the Agricultural Connection. New York: Elsevier; 2003:12–13.

    Google Scholar 

  47. Leary T. Coronary spasm as a possible factor in producing sudden death. Am Heart J. 1934;10:328–337.

    Google Scholar 

  48. Constantinides P. Plaque fissures in human coronary thrombosis. J Atheroscler Res. 1966;6:1–17.

    Google Scholar 

  49. Constantinides P, Booth J, Carlson G. Production of advanced cholesterol atherosclerosis in the rabbit. Arch Pathol. 1960;70:80–92.

    Google Scholar 

  50. Constantinides P, Chakravarti RN. Rabbit arterial thrombosis production by systemic procedures. Arch Pathol. 1961;72:197–208.

    PubMed  CAS  Google Scholar 

  51. Constantinides P. Experimental Atherosclerosis. New York: Elsevier; 1965.

    Google Scholar 

  52. Willerson JT et al. Conversion from chronic to acute coronary artery disease: speculation regarding mechanisms. Am J Cardiol. 1984;54(10):1349–1354.

    PubMed  CAS  Google Scholar 

  53. Farb A et al. Sudden coronary death. Frequency of active coronary lesions, inactive coronary lesions, and myocardial infarction. Circulation. 1995;92(7):1701–1709.

    PubMed  CAS  Google Scholar 

  54. Davies MJ. Detecting vulnerable coronary plaques. Lancet. 1996;347(9013):1422–1423.

    PubMed  CAS  Google Scholar 

  55. Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation. 1994;90(2):775–778.

    PubMed  CAS  Google Scholar 

  56. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92(3):657–671.

    PubMed  CAS  Google Scholar 

  57. Moreno PR et al. Macrophages, smooth muscle cells, and tissue factor in uns angina. Implications for cell-mediated thrombogenicity in acute coronary syndromes. Circulation. 1996;94(12):3090–3097.

    PubMed  CAS  Google Scholar 

  58. Burke AP et al. Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA. 1999;281(10):921–926.

    PubMed  CAS  Google Scholar 

  59. Pasterkamp G et al. Inflammation of the atherosclerotic cap and shoulder of the plaque is a common and locally observed feature in unruptured plaques of femoral and coronary arteries. Arterioscler Thromb Vasc Biol. 1999;19(1):54–58.

    PubMed  CAS  Google Scholar 

  60. van der Wal AC, Becker AE, van der Loos C, Das P. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89:36–44.

    PubMed  Google Scholar 

  61. Narula J, Strauss W. The popcorn plaques. Nat Med. 2007;13(5):532–534.

    PubMed  CAS  Google Scholar 

  62. Boyle JJ. Association of coronary plaque rupture and atherosclerotic inflammation. J Pathol. 1997;181(1):93–99.

    PubMed  CAS  Google Scholar 

  63. Moreno PR, Purushothaman KR, Sirol M, Levy AP, Fuster V. Neovascularization in human atherosclerosis. Circulation. 2006;113(18):2245–2252.

    PubMed  Google Scholar 

  64. Moreno PR, Purushothaman KR, Fuster V, O’Connor WN. Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta: implications for plaque vulnerability. Circulation. 2002;105(21):2504–2511.

    PubMed  Google Scholar 

  65. Kolodgie FD et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349(24):2316–2325.

    PubMed  CAS  Google Scholar 

  66. Pasterkamp G et al. Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteases 1, 2 and 9 in the human coronary artery. Atherosclerosis. 2000;150(2):245–253.

    PubMed  CAS  Google Scholar 

  67. Virmani R, Burke AP, Kolodgie FD, Farb A. Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. J Interv Cardiol. 2003;16(3):267–272.

    PubMed  Google Scholar 

  68. Burke AP, Farb A, Malcom G, Virmani R. Effect of menopause on plaque morphologic characteristics in coronary atherosclerosis. Am Heart J. 2001;141(2 Suppl):S58-S62.

    PubMed  CAS  Google Scholar 

  69. Sambola A et al. Role of risk factors in the modulation of tissue factor activity and blood thrombogenicity. Circulation. 2003;107(7):973–977.

    PubMed  CAS  Google Scholar 

  70. Kolodgie FD et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol. 2002;22(10):1642–1648.

    PubMed  CAS  Google Scholar 

  71. Arbustini E et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart. 1999;82(3):269–272.

    PubMed  CAS  Google Scholar 

  72. Henriques de Gouveia R, Van der Wal AC, Van der Loos CM, Becker AE. Sudden unexpected death in young adults. Discrepancies between initiation of acute plaque complications and the onset of acute coronary death. Eur Heart J. 2002;23(18):1433–1440.

    PubMed  CAS  Google Scholar 

  73. Burke AP, Taylor A, Farb A, Malcom GT, Virmani R. Coronary calcification: insights from sudden coronary death victims. Z Kardiol. 2000;89(suppl 2):49–53.

    PubMed  Google Scholar 

  74. Burke AP et al. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation. 1998;97(21):2110–2116.

    PubMed  CAS  Google Scholar 

  75. Campeau L. Letter: grading of angina pectoris. Circulation. 1976;54(3):522–523.

    PubMed  CAS  Google Scholar 

  76. Taubman MB et al. Agonist-mediated tissue factor expression in cultured vascular smooth muscle cells. Role of Ca2+ mobilization and protein kinase C activation. J Clin Invest. 1993;91(2):547–552.

    PubMed  CAS  Google Scholar 

  77. Flugelman MY et al. Smooth muscle cell abundance and fibroblast growth factors in coronary lesions of patients with nonfatal unstable angina. A clue to the mechanism of transformation from the stable to the unstable clinical state. Circulation. 1993;88(6):2493–2500.

    PubMed  CAS  Google Scholar 

  78. Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol. 1995;147(2):251–266.

    PubMed  CAS  Google Scholar 

  79. Ball RY et al. Evidence that the death of macrophage foam cells contributes to the lipid core of atheroma. Atherosclerosis. 1995;114(1):45–54.

    PubMed  CAS  Google Scholar 

  80. Falk E. Morphologic features of unstable atherothrombotic plaques underlying acute coronary syndromes. Am J Cardiol. 1989;63(10):114E-120E.

    PubMed  CAS  Google Scholar 

  81. Lundberg B. Chemical composition and physical state of lipid deposits in atherosclerosis. Atherosclerosis. 1985;56(1):93–110.

    PubMed  CAS  Google Scholar 

  82. Small DM. Observations on lecithin. Phase equilibria and structure of dry and hydrated egg lecithin. J Lipid Res. 1967;8:551–557.

    PubMed  CAS  Google Scholar 

  83. Shipley GG, Avecilla LS, Small DM. Phase behavior and structure of aqueous dispersions of sphingomyelin. J Lipid Res. 1974;15(2):124–131.

    PubMed  CAS  Google Scholar 

  84. Ginsburg GS, Atkinson D, Small DM. Physical properties of cholesteryl esters. Prog Lipid Res. 1984;23(3):135–167.

    PubMed  CAS  Google Scholar 

  85. Small DM. The physical state of lipids of biological importance: cholesterol esters, cholesterol, and triglyceride. In: Blank E, ed. Surface Chemistry of Biological Systems. New York: Plenum Press; 1970:55–84.

    Google Scholar 

  86. Loomis CR, Shipley GG, Small DM. The phase behavior of hydrated cholesterol. J Lipid Res. 1979;20(4):525–535.

    PubMed  CAS  Google Scholar 

  87. Bourges M, Small DM, Dervichian DG. Biophysics of lipidic associations. II. The ternary systems: cholesterol-lecithin-water. Biochim Biophys Acta. 1967;137(1):157–167.

    PubMed  CAS  Google Scholar 

  88. Phillips MC. Cholesterol packing, crystallization and exchange properties in phosphatidylcholine vesicle systems. Hepatology. 1990;12(3 pt 2):75S-80S discussion 80S-82S.

    PubMed  CAS  Google Scholar 

  89. Peng S, Guo W, Morrisett JD, Johnstone MT, Hamilton JA. Quantification of cholesteryl esters in human and rabbit atherosclerotic plaques by magic-angle spinning (13)C-NMR. Arterioscler Thromb Vasc Biol. 2000;20(12):2682–2688.

    PubMed  CAS  Google Scholar 

  90. Small DM, Shipley GG. Physical-chemical basis of lipid deposition in atherosclerosis. Science. 1974;185(147):222-229.

    PubMed  CAS  Google Scholar 

  91. Katz SS, Small DM. Isolation and and partial characterization of the lipid phases of human atherosclerotic plaques. J Biol Chem. 1980;255(20):9753–9759.

    PubMed  CAS  Google Scholar 

  92. Guyton JR, Klemp KF. Development of the lipid-rich core in human atherosclerosis. Arterioscler Thromb Vasc Biol. 1996;16(1):4–11.

    PubMed  CAS  Google Scholar 

  93. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13-C18.

    PubMed  CAS  Google Scholar 

  94. Abela GS, Aziz K. Cholesterol crystals rupture biological membranes and human plaques during acute cardiovascular events – a novel insight into plaque rupture by scanning electron microscopy. Scanning. 2006;28(1):1–10.

    PubMed  CAS  Google Scholar 

  95. Gertz SD, Roberts WC. Hemodynamic shear force in rupture of coronary arterial atherosclerotic plaques. Am J Cardiol. 1990;66(19):1368–1372.

    PubMed  CAS  Google Scholar 

  96. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J. 1993;69(5):377–381.

    PubMed  CAS  Google Scholar 

  97. Rekhter MD et al. Hypercholesterolemia causes mechanical weakening of rabbit atheroma: local collagen loss as a prerequisite of plaque rupture. Circ Res. 2000;86(1):101-108.

    PubMed  CAS  Google Scholar 

  98. Fernandez-Ortiz A et al. Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. J Am Coll Cardiol. 1994;23(7):1562–1569.

    PubMed  CAS  Google Scholar 

  99. Guyton JR, Klemp KF. The lipid-rich core region of human atherosclerotic fibrous plaques. Prevalence of small lipid droplets and vesicles by electron microscopy. Am J Pathol. 1989;134(3):705–717.

    PubMed  CAS  Google Scholar 

  100. Rapaport SI, Rao LV. Initiation and regulation of tissue factor-dependent blood coagulation. Arterioscler Thromb. 1992;12(10):1111–1121.

    PubMed  CAS  Google Scholar 

  101. Wilcox JN, Smith KM, Schwartz SM, Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA. 1989;86(8):2839–2843.

    PubMed  CAS  Google Scholar 

  102. Schecter AD et al. Release of active tissue factor by human arterial smooth muscle cells. Circ Res. 2000;87(2):126-132.

    PubMed  CAS  Google Scholar 

  103. Brand K et al. Oxidized LDL enhances lipopolysaccharide-induced tissue factor expression in human adherent monocytes. Arterioscler Thromb. 1994;14(5):790–797.

    Google Scholar 

  104. Redgrave JN, Lovett JK, Gallagher PJ, Rothwell PM. Histological assessment of 526 symptomatic carotid plaques in relation to the nature and timing of ischemic symptoms: the Oxford plaque study. Circulation. 2006;113(19):2320–2328.

    PubMed  CAS  Google Scholar 

  105. Kaartinen M et al. Mast cell infiltration in acute coronary syndromes: implications for plaque rupture. J Am Coll Cardiol. 1998;32(3):606.

    PubMed  CAS  Google Scholar 

  106. Lendon CL, Davies MJ, Born GV, Richardson PD. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis. 1991;87(1):87–90.

    PubMed  CAS  Google Scholar 

  107. Loree HM, Kamm RD, Stringfellow RG, Lee RT. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res. 1992;71(4):850–858.

    PubMed  CAS  Google Scholar 

  108. Libby P. Changing concepts of atherogenesis. J Intern Med. 2000;247(3):349–358.

    PubMed  CAS  Google Scholar 

  109. Amento EP, Ehsani N, Palmer H, Libby P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb. 1991;11(5):1223–1230.

    PubMed  CAS  Google Scholar 

  110. Loftus IM, Naylor AR, Bell PR, Thompson MM. Matrix metalloproteinases and atherosclerotic plaque instability. Br J Surg. 2002;89(6):680–694.

    PubMed  Google Scholar 

  111. Loftus IM, Thompson MM. The role of matrix metalloproteinases in vascular disease. Vasc Med. 2002;7(2):117–133.

    PubMed  CAS  Google Scholar 

  112. Galis ZS, Sukhova GK, Kranzhofer R, Clark S, Libby P. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci USA. 1995;92(2):402–406.

    PubMed  CAS  Google Scholar 

  113. Sukhova GK et al. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation. 1999;99(19):2503–2509.

    PubMed  CAS  Google Scholar 

  114. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994;94(6):2493–2503.

    PubMed  CAS  Google Scholar 

  115. Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest. 1998;102(3):576–583.

    PubMed  CAS  Google Scholar 

  116. Geiringer E. Intimal vascularization and atherosclerosis. J Pathol Bacteriol. 1951;63(2):201–211.

    PubMed  CAS  Google Scholar 

  117. Kumamoto M, Nakashima Y, Sueishi K. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum Pathol. 1995;26(4):450.

    PubMed  CAS  Google Scholar 

  118. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–660.

    PubMed  CAS  Google Scholar 

  119. Barger AC, Beeuwkes R 3rd, Lainey LL, Silverman KJ. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med. 1984;310(3):175-177.

    PubMed  CAS  Google Scholar 

  120. Zhang Y, Cliff WJ, Schoefl GI, Higgins G. Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol. 1993;143(1):164–172.

    PubMed  CAS  Google Scholar 

  121. Jeziorska M, Woolley DE. Neovascularization in early atherosclerotic lesions of human carotid arteries: its potential contribution to plaque development. Hum Pathol. 1999;30(8):919–925.

    PubMed  CAS  Google Scholar 

  122. O’Brien KD, McDonald TO, Chait A, Allen MD, Alpers CE. Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation. 1996;93(4):672–682.

    PubMed  Google Scholar 

  123. Moreno PR, Fuster V. New aspects in the pathogenesis of diabetic atherothrombosis. J Am Coll Cardiol. 2004;44(12):2293–2300.

    PubMed  CAS  Google Scholar 

  124. Moreno PR et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation. 2004;110(14):2032–2038.

    PubMed  Google Scholar 

  125. Jeziorska M, Woolley DE. Local neovascularization and cellular composition within vulnerable regions of atherosclerotic plaques of human carotid arteries. J Pathol. 1999;188(2):189–196.

    PubMed  CAS  Google Scholar 

  126. Mofidi R et al. Association between plaque instability, angiogenesis and symptomatic carotid occlusive disease. Br J Surg. 2001;88(7):945–950.

    PubMed  CAS  Google Scholar 

  127. Fleiner M et al. Arterial neovascularization and inflammation in vulnerable patients: early and late signs of symptomatic atherosclerosis. Circulation. 2004;110(18):2843–2850.

    PubMed  Google Scholar 

  128. Yeagle PL. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985;822(3–4):267–287.

    PubMed  CAS  Google Scholar 

  129. Tziakas DN et al. Total cholesterol content of erythrocyte membranes is increased in patients with acute coronary syndrome: a new marker of clinical instability? J Am Coll Cardiol. 2007;49(21):2081–2089.

    PubMed  CAS  Google Scholar 

  130. Vlodavsky I, Friedmann Y. Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest. 2001;108(3):341–347.

    PubMed  CAS  Google Scholar 

  131. Virmani R et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25(10):2054–2061.

    PubMed  CAS  Google Scholar 

  132. Crawford T, Levene CI. Medial thinning in atheroma. J Pathol Bacteriol. 1953;66(1):19–23.

    PubMed  CAS  Google Scholar 

  133. Armstrong ML, Heistad DD, Marcus ML, Megan MB, Piegors DJ. Structural and hemodynamic response of peripheral arteries of macaque monkeys to atherogenic diet. Arteriosclerosis. 1985;5(4):336–346.

    PubMed  CAS  Google Scholar 

  134. Bond MG, Adams MR, Bullock BC. Complicating factors in evaluating coronary artery atherosclerosis. Artery. 1981;9(1):21–29.

    PubMed  CAS  Google Scholar 

  135. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–1375.

    PubMed  CAS  Google Scholar 

  136. Pasterkamp G et al. Paradoxical arterial wall shrinkage may contribute to luminal narrowing of human atherosclerotic femoral arteries. Circulation. 1995;91(5):1444–1449.

    PubMed  CAS  Google Scholar 

  137. Pasterkamp G et al. Atherosclerotic arterial remodeling in the superficial femoral artery. Individual variation in local compensatory enlargement response. Circulation. 1996;93(10):1818–1825.

    PubMed  CAS  Google Scholar 

  138. Nishioka T et al. Contribution of inadequate compensatory enlargement to development of human coronary artery stenosis: an in vivo intravascular ultrasound study. J Am Coll Cardiol. 1996;27(7):1571–1576.

    PubMed  CAS  Google Scholar 

  139. Mintz GS et al. Contribution of inadequate arterial remodeling to the development of focal coronary artery stenoses. An intravascular ultrasound study. Circulation. 1997;95(7):1791–1798.

    PubMed  CAS  Google Scholar 

  140. Pasterkamp G et al. The impact of atherosclerotic arterial remodeling on percentage of luminal stenosis varies widely within the arterial system. A postmortem study. Arterioscler Thromb Vasc Biol. 1997;17(11):3057–3063.

    PubMed  CAS  Google Scholar 

  141. Pasterkamp G et al. Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: the remodeling paradox. J Am Coll Cardiol. 1998;32(3):655–662.

    PubMed  CAS  Google Scholar 

  142. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 2002;105(8):939–943.

    PubMed  Google Scholar 

  143. Burke AP, Kolodgie FD, Farb A, Weber D, Virmani R. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation. 2002;105(3):297–303.

    PubMed  Google Scholar 

  144. Schoenhagen P et al. Relation of matrix-metalloproteinase 3 found in coronary lesion samples retrieved by directional coronary atherectomy to intravascular ultrasound observations on coronary remodeling. Am J Cardiol. 2002;89(12):1354–1359.

    PubMed  CAS  Google Scholar 

  145. Schoenhagen P et al. Association of arterial expansion (expansive remodeling) of bifurcation lesions determined by intravascular ultrasonography with unstable clinical presentation. Am J Cardiol. 2001;88(7):785–787.

    PubMed  CAS  Google Scholar 

  146. Schoenhagen P et al. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation. 2000;101(6):598–603.

    PubMed  CAS  Google Scholar 

  147. Schoenhagen P, Ziada KM, Vince DG, Nissen SE, Tuzcu EM. Arterial remodeling and coronary artery disease: the concept of “dilated” versus “obstructive” coronary atherosclerosis. J Am Coll Cardiol. 2001;38(2):297–306.

    PubMed  CAS  Google Scholar 

  148. Smits PC et al. Coronary artery disease: arterial remodelling and clinical presentation. Heart. 1999;82(4):461–464.

    PubMed  CAS  Google Scholar 

  149. Yamagishi M et al. Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol. 2000;35(1):106–111.

    PubMed  CAS  Google Scholar 

  150. Mann JM, Davies MJ. Vulnerable plaque. Relation of characteristics to degree of stenosis in human coronary arteries. Circulation. 1996;94(5):928–931.

    PubMed  CAS  Google Scholar 

  151. Ambrose JA et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988;12(1):56–62.

    PubMed  CAS  Google Scholar 

  152. Giroud D, Li JM, Urban P, Meier B, Rutishauer W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol. 1992;69(8):729–732.

    PubMed  CAS  Google Scholar 

  153. Nakamura M et al. Impact of coronary artery remodeling on clinical presentation of coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol. 2001;37(1):63–69.

    PubMed  CAS  Google Scholar 

  154. Vink A et al. Plaque burden, arterial remodeling and plaque vulnerability: determined by systemic factors? J Am Coll Cardiol. 2001;38(3):718–723.

    PubMed  CAS  Google Scholar 

  155. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med. 1994;330(20):1431–1438.

    PubMed  CAS  Google Scholar 

  156. Chatzizisis YS et al. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49(25):2379–2393.

    PubMed  CAS  Google Scholar 

  157. Stone PH et al. Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Eur Heart J. 2007;28(6):705–710.

    PubMed  Google Scholar 

  158. Davies MJ. Glagovian remodelling, plaque composition, and stenosis generation. Heart. 2000;84(5):461–462.

    PubMed  CAS  Google Scholar 

  159. Isner JM, Donaldson RF, Fortin AH, Tischler A, Clarke RH. Attenuation of the media of coronary arteries in advanced atherosclerosis. Am J Cardiol. 1986;58(10):937–939.

    PubMed  CAS  Google Scholar 

  160. Kohchi K, Takebayashi S, Hiroki T, Nobuyoshi M. Significance of adventitial inflammation of the coronary artery in patients with unstable angina: results at autopsy. Circulation. 1985;71(4):709–716.

    PubMed  CAS  Google Scholar 

  161. Laine P et al. Association between myocardial infarction and the mast cells in the adventitia of the infarct-related coronary artery. Circulation. 1999;99(3):361–369.

    PubMed  CAS  Google Scholar 

  162. Wolinsky H, Glagov S. A lamellar unit of aortic medial structure and function in mammals. Circ Res. 1967;20(1):99–111.

    PubMed  CAS  Google Scholar 

  163. Davies MJ. The composition of coronary-artery plaques. N Engl J Med. 1997;336(18):1312–1314.

    PubMed  CAS  Google Scholar 

  164. Friedrich GJ et al. Detection of intralesional calcium by intracoronary ultrasound depends on the histologic pattern. Am Heart J. 1994;128(3):435–441.

    PubMed  CAS  Google Scholar 

  165. Kondos GT et al. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation. 2003;107(20):2571–2576.

    PubMed  Google Scholar 

  166. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;291(2):210–215.

    Google Scholar 

  167. Burke AP et al. Pathophysiology of calcium deposition in coronary arteries. Herz. 2001;26(4):239–244.

    PubMed  CAS  Google Scholar 

  168. Kragel AH, Reddy SG, Wittes JT, Roberts WC. Morphometric analysis of the composition of coronary arterial plaques in isolated unstable angina pectoris with pain at rest. Am J Cardiol. 1990;66(5):562–567.

    PubMed  CAS  Google Scholar 

  169. Kragel AH, Gertz SD, Roberts WC. Morphologic comparison of frequency and types of acute lesions in the major epicardial coronary arteries in unstable angina pectoris, sudden coronary death and acute myocardial infarction. J Am Coll Cardiol. 1991;18(3):801–808.

    PubMed  CAS  Google Scholar 

  170. Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart. 1999;82(3):265–268.

    PubMed  CAS  Google Scholar 

  171. Qiao Y, Farber A, Semaan E, Hamilton JA. Images in cardiovascular medicine. Healing of an asymptomatic carotid plaque ulceration. Circulation. 2008;118(10):e147–e148.

    PubMed  Google Scholar 

  172. Burke AP et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103(7):934–940.

    PubMed  CAS  Google Scholar 

  173. Roberts WC, Jones AA. Quantitation of coronary arterial narrowing at necropsy in sudden coronary death: analysis of 31 patients and comparison with 25 control subjects. Am J Cardiol. 1979;44(1):39–45.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Phinikaridou, A., Qiao, Y., Hamilton, J.A. (2011). Stable and Vulnerable Atherosclerotic Plaques. In: Nicolaides, A., Beach, K., Kyriacou, E., Pattichis, C. (eds) Ultrasound and Carotid Bifurcation Atherosclerosis. Springer, London. https://doi.org/10.1007/978-1-84882-688-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-688-5_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-687-8

  • Online ISBN: 978-1-84882-688-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics