Skip to main content

Abstract

Cancer dormancy is a well-recognized clinical phenomenon in which tumor cells are present, but the tumor burden does not increase for long periods of time1–3. However, tumor cells can regrow many years later. In breast cancer, there is a steady rate of recurrence 10 to 20 years after removal of the primary tumorl3,4 and the recurrent tumor frequently grows at a rapid rate(5). A particularly pertinent example is the low grade (follicular) form of non-Hodgkin’s lymphoma (NHL) in which long-term remissions are common but, eventually, virtually all die of a recurrence. Levy and Miller(5) have treated such patients with monoclonal anti-idiotype (Id) and have achieved remissions in a high proportion of patients. Relapses, many caused by Id-negative variants, are frequent indicating that the antibody (Ab) was particularly effective in inducing dormancy in cells bearing the corresponding idiotope but that hypermutation of VH and VL genes eventually allow some tumor cells from the original clone to escape(5–7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stewart, T.H.M., A.C. Hollinshead, and S. Raman. Tumor dormancy initiation maintenance and termination in animals and humans. Can. J. Surg. 34: 321–325, 1991.

    PubMed  CAS  Google Scholar 

  2. Meltzer, A. Dormancy and breast cancer. J. Surg. Oncol. 43: 181–188, 1990.

    CAS  Google Scholar 

  3. Berkowitz, H., F. Rosata, and C.P. Neiby. Late recurrence of carcinoma of breast: Case report and literature survey. Amer. Surg. 32: 287–289, 1966.

    CAS  Google Scholar 

  4. Henderson, I.C., J.R. Harris, D.W. Kinne, and S. Hellman. Cancer of the breast. IN: Cancer: Principles and Practice of Oncology (VT. DeVita, Jr., S. Hellman, and S.A. Rosenberg, Eds.), Philadelphia: J.B. Lippincott, pp. 1197–1268, 1989.

    Google Scholar 

  5. Levy, R. and A.R. Miller. Therapy of lymphoma directed at idiotypes. Monographs. J. Natl. Cancer Inst. 10: 61–68, 1990.

    Google Scholar 

  6. Meeker, T., J. Lowder, M.L. Cleary, S. Stewart, R. Warnke, J. Sklar, and R. Levy. Emergence of idiotype variants during treatment of B-cell lymphoma with anti-idiotype antibodies. N. Engl. J. Med. 312: 1658–1665, 1985.

    CAS  Google Scholar 

  7. Brown, S.L., R.A. Miller, S.J. Horning, D. Czerwinski, S.M. Hart, R. McElderry, T. Basham, R.A. Warnke, T.C. Merigan, and R. Levy. Treatment of B-cell lymphomas with anti-idiotype antibodies alone and in combination with alpha interferon. Blood 73: 651–661, 1989.

    PubMed  CAS  Google Scholar 

  8. Uhr, J.W., T. Tucker, R.D. May, H. Siu, and E.S. Vitetta. Cancer dormancy: Studies of the murine BCL1 lymphoma. Cancer Res. 51: 50455–50535, 1991.

    Google Scholar 

  9. Yefenof, E., L.J. Picker, R.H. Scheuermann, T.F. Tucker, E.S. Vitetta, and J.W. Uhr. Cancer dormancy: Isolation and characterization of dormant lymphoma cells. Proc. Natl. Acad. Sci. USA 90: 1829–1833, 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Racila, E., R.H. Scheuermann, L.J. Picker, E. Yefenof, T. Tucker, W. Chang, R. Marches, N.E. Street, E.S. Vitetta, and J.W. Uhr. Tumor dormancy and cell signaling. II. Antibody as an agonist in inducing dormancy of a B cell lymphoma in SCID mice. J. Exp. Med. 181: 1539–1550, 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Scheuermann, R.H., E. Racila, T. Tucker, E. Yefenof, N.E. Street, E.S. Vitetta, L.J. Picker, and J.W. Uhr. Lyn tyrosine kinase signals cell cycle arrest but not apoptosis in B-lineage lymphoma cells. Proc. Natl. Acad. Sci. USA 91: 4048–4052, 1994.

    Article  CAS  Google Scholar 

  12. Marches, R., E. Racila, T.F. Tucker, L. Picker, P. Mongini, R. Hsueh, R.H. Scheuermann, and J.W. Uhr. Tumor dormancy and cell signaling. III: Role of hypercrosslinking of IgM and CD40 on the induction of cell cycle arrest and apoptosis in B lymphoma cells. Therap. Immunol., in press,1995.

    Google Scholar 

  13. Goodnow, C.C. Transgenic mice and analysis of B-cell tolerance. Annu. Rev. Immunol. 10: 489–518, 1992.

    Article  CAS  Google Scholar 

  14. Nossal, G.J. Cellular and molecular mechanics of B lymphocyte tolerance. Adv. Immunol. 52: 283–331, 1992.

    Article  PubMed  CAS  Google Scholar 

  15. Hasbold, J. and G.G.B. Klaus. Anti-immunoglobulin antibodies induce apoptosis in immature B cell lymphomas. Eur. J. Immunol. 20: 1685–1690, 1990.

    CAS  Google Scholar 

  16. Parry, S.L., M.J. Holman, J. Hasbold, and G.G.B. Klaus. Plastic-immobilized anti-Is or anti-6 antibodies induce apoptosis in mature murine B lymphocytes. Eur. J. Immunol. 24: 974–979, 1994.

    CAS  Google Scholar 

  17. Parry, S.L., J. Hasbold, M. Holman, and G.B. Klaus. Hypercrosslinking surface IgM or IgD receptors on mature B cells induces apoptosis that is reversed by costimulation with IL-4 and anti-CD40. J. Immunol. 152: 2821–2829, 1994.

    PubMed  CAS  Google Scholar 

  18. Scott, D.W., M. Vankataraman, and J.J. Jandinski. Multiple pathways of B lymphocyte tolerance. Immunol. Rev. 43: 241–280, 1979.

    Article  PubMed  CAS  Google Scholar 

  19. Nossal, G.J.V., B.L. Pike, J.M. Teale, J.E. Layton, T.W. Kay, and F.L. Battye. Cell fractionation methods and the target cells for clonal abortion of B lymphocytes. Immunol. Rev. 43: 185–216, 1979.

    Article  CAS  Google Scholar 

  20. Cambier, J.C. and J.T. Ransom. Molecular mechanisms of transmembrane signaling in B lymphocytes. Annu. Rev. Immunol. 5: 175–199, 1987.

    Article  CAS  Google Scholar 

  21. Gold, M. and A.L. DeFranco. Biochemistry of B lymphocyte activation. Adv. Immunol. 55: 221–295, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Adachi, M., R. Watanabe-Fukunaga, and S. Nagata. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of 1pr mice. Natl. Acad. Sci. USA 90: 1756–1760, 1993.

    Article  CAS  Google Scholar 

  23. Chu, J.L., J. Drappa, A. Parnassa, and K.B. Elkon. The defect in Fas mRNA expression in MRL/lpr mice is associated with insertion of the retrotransposon, ETn. J. Exp. Med. 178: 723–730, 1993.

    Article  PubMed  CAS  Google Scholar 

  24. Wu, J., T. Zhou, J. He, and J.D. Mountz. Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene. J. Exp. Med. 178: 461–468, 1993.

    Article  CAS  Google Scholar 

  25. Dhein, J., H. Walczak, C. Bäumler, K.-M. Debatin, and P.H. Krammer. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373: 438–441, 1995.

    Article  PubMed  CAS  Google Scholar 

  26. Brunner, T., R.J. Mogil, D. LaFace, N.J. Yoo, A. Mahboubi, F. Echeverri, S.J. Martin, W.R. Force, D.H. Lynch, C.F. Ware, and D.R. Green. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373: 441–444, 1995.

    Article  PubMed  CAS  Google Scholar 

  27. Ju, S.-T., D.J. Panka, H. Cui, R. Ettinger, M. El-Khatib, D.H. Sherr, B.Z. Stanger, and A. Marshak-Rothstein. Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373: 444–448, 1995.

    Article  PubMed  CAS  Google Scholar 

  28. Racila, E., R. Hsueh, R. Marches, T.F. Tucker, P.H. Krammer, R.H. Scheuermann, and J.W. Uhr. Tumor dormancy and cell signaling. IV. Anti-p induced apoptosis in human B lymphoma cells is not caused by an APO-1 - APO-1 ligand interaction. Proc. Natl. Acad. Sci. USA, in press,1995.

    Google Scholar 

  29. Ju, S.T., H. Cui, D.J. Panka, R. Ettinger, and A. Marshak-Rothstein. Participation of target Fas protein in apoptosis pathway induced by CD4+ Thl and CD8+ cytotoxic T cells. Proc. Natl. Acad. Sci. USA 91: 4185–4189, 1994.

    Article  PubMed  CAS  Google Scholar 

  30. Berke, G. The CTL’s kiss of death. Cell 81: 9–12, 1995.

    Article  PubMed  CAS  Google Scholar 

  31. Vasile, S., J.E. Coligan, M. Yoshida, and B.K. Seon. Isolation and chemical characterization of the human B29 and mb-1 proteins of the B cell antigen receptor complex. Mol. Immunol. 31: 419–427, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Nakamura, T., M.C. Sekar, H. Kubagawa, and M. Cooper. Signal transduction in human B cells initiated via Igß ligation. Int. Immunol. 10: 1309–1315, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Uhr, J.W. et al. (1996). Role of Antibody Signaling in Inducing Tumor Dormancy. In: Gupta, S., Cohen, J.J. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation VI. Advances in Experimental Medicine and Biology, vol 406. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0274-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0274-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0276-4

  • Online ISBN: 978-1-4899-0274-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics