Skip to main content

Autoregulation of Glucose Transport: Effects of Glucose on Glucose Transporter Expression and Cellular Location in Muscle

  • Chapter
New Concepts in the Pathogenesis of NIDDM

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 334))

Abstract

Decreased peripheral utilization of glucose is an important pathogenic mechanism in diabetes. Although it is universally acknowledged that insulin resistance plays a major role in the reduction of glucose consumption by peripheral tissues, and many defects have been described in the function of insulin receptors (see chapter by Olefsky), indirect clinical and in vivo experimental observations suggest that hyperglycemia per se may participate in inducing and/or maintaining a reduced glucose uptake (summarized in chapter by De Fronzo). The idea occurred to us some years ago that a certain analogy may exist between the downregulation of hormone receptors by augmented hormone concentrations, and the reduction of glucose uptake by hyperglycemia. The extraordinary redundancy of compensatory events that operate in vivo make the testing of such a hypothesis near-impossible. We therefore chose to work in vitro, and because muscle is the main glucose consumer of the periphery, we focused on in vitro muscle preparations and myocyte lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Sasson, D. Edelson, and E. Cerasi, In vitro autoregulation of glucose utilization in rat soleus muscle, Diabetes. 36:1041 (1987).

    Article  PubMed  CAS  Google Scholar 

  2. D. Yaffe, Cellular aspects of muscle differentiation in vitro, Curr Top Dev Biol. 4:37 (1969).

    Article  PubMed  CAS  Google Scholar 

  3. S. Sasson, and E. Cerasi, Substrate regulation of the glucose transport system in rat skeletal muscle: characterization and kinetic analysis in isolated soleus muscle and skeletal muscle cells in culture, J Biol Chem. 261:16827 (1986).

    PubMed  CAS  Google Scholar 

  4. S.W. Cushman, and L.J. Wardzala, Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell, J Biol Chem. 255:4758 (1980).

    PubMed  CAS  Google Scholar 

  5. K. Suzuki, and T. Kono, Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site, Proc Natl Acad Sci. USA 77:2542 (1980).

    Article  PubMed  CAS  Google Scholar 

  6. G.D. Holman, I.J. Kozka, A.E. Clark, C.J. Flower, J. Saltis, A.D. Habberfield, I.A. Simpson, and S.W. Cushman, Cell surface labeling of glucose transporter isoform GLUT 4 by bis-mannose photolabel: correlation with stimulation of glucose transport in rat adipose cells by insulin and phorbol ester, J Biol Chem. 265:18172 (1990).

    PubMed  CAS  Google Scholar 

  7. R. Greco-Perotto, E. Wertheimer, B. Jeanrenaud, E. Cerasi, and S. Sasson, Glucose regulates its transport in L8 myocytes by modulating cellular trafficking of the transporter GLUT-1, Biochem J. 186(1): 157 (1992).

    Google Scholar 

  8. P.S. Walker, T. Ramlal, V. Sarabia, U.M. Koivisto, P.J. Bilan, J.E. Pessin, and A. Klip, Glucose transport activity in L6 muscle cells is regulated by the coordinate control of subcellular glucose transporter distribution, biosynthesis, and mRNA transcription, J Biol Chem. 265:1516 (1990).

    PubMed  CAS  Google Scholar 

  9. P.M. Haney, J.W. Slot, R.C. Piper, D.E. James, and M. Mueckler, Intracellular targeting of the insulin-regulatable glucose transporter (GLUT-4) is isoform specific and independent of cell type, J Cell Biol 114:689 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. R.S. Smith, M.J. Charron, N. Shah, H.F. Lodish, and L. Jarrett, Immunoelectron microscopic demonstration of insulin-stimulated translocation of glucose transporters to the plasma membrane of isolated rat adipocytes and masking of the carboxyl-terminal epitope of intracellular Glut 4, Proc Natl Acad Sci USA 88:6893 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. B. Vogt, C. Mühlbacher, J. Carrescosa, B. Obermaier-Kusser, E. Seffer, J. Mushack, D. Pongratz, and H.U. Häring, Subcellular distribution of GLUT 4 in the skeletal muscle of lean Type 2 (non-insulin-dependent) diabetic patients in the basal state, Diabetologia. 35:456 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. W.T. Garvey, Glucose transport and NIDDM, Diabetes Care. 15:396 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. E. Wertheimer, Autoregulation of glucose uptake in skeletal muscle cells. Ph.D. Thesis, The Hebrew University of Jerusalem (1991).

    Google Scholar 

  14. A.S. Lee, Mammalian stress response: induction of the glucose-regulated protein family, Curr Opinion Cell Biol. 4:267 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. E. Wertheimer, S. Sasson, E. Cerasi, and Y. Ben-Neriah, The ubiquitous glucose transporter GLUT-1 belongs to the glucose regulated protein family of stress-induced proteins, Proc Natl Acad Sci USA. 88:2525 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. D.G. Macejak, and P. Sarnow, Internal initiation of translation mediated by the 5′ leader to a cellular mRNA, Nature. 353:90 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. G.I. Bell, T. Kayano, J.B. Buse, C.F. Burant, J. Takeda, D. Lin, H. Fukumoto, and S. Seino, Molecular biology of mammalian glucose transporters, Diabetes Care. 13: 198 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. C. Stratowa, and W.J. Rutter, Selective regulation of trypsin gene expression by calcium and by glucose starvation in a rat exocrine pancreas cell line, Proc Natl Acad Sci USA. 83:4292 (1986).

    Article  PubMed  CAS  Google Scholar 

  19. S.K. Wooden, L-J. Li, D. Navarro, I. Qadri, L. Pereira, and A.S. Lee, Trans-activation of the grp 78 promoter by malfolded proteins, glycosylation block, and calcium ionophore is mediated through a proximal region containing a CCAAT motif which interacts with CTF/NF-I, Mol Cel Biol. 11:5612 (1991).

    CAS  Google Scholar 

  20. D. Cheneval, R.J. Christy, D. Geiman, P. Cornelius, and M.D. Lane, Cell-free transcription directed by the 422 adipose P2 gene promoter: Activation by the CCAAT/enhancer binding protein, Proc Natl Acad Sci USA. 88:8465 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. K. Tasanen, J. Oikarinen, K.I. Kivirikko, and T. Pihlajaniemi, Promoter of the gene for the multifunctional protein disulfide isomerase polypeptide. Functional significance of the six CCAAT boxes and other promoter elements, J Biol Chem. 267:11513 (1992).

    PubMed  CAS  Google Scholar 

  22. T. Murakami, T. Nishiyama, T. Shirotani, Y. Shinohara, M. Kan, K. Ishii, F. Kanai, S. Nakazuru, and Y. Ebina, Identification of two enhancer elements in the gene encoding the type 1 glucose transporter from the mouse which are responsive to serum, growth factor, and oncogenes, J Biol Chem. 267:9300 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sasson, S., Ashhab, Y., Melloul, D., Cerasi, E. (1993). Autoregulation of Glucose Transport: Effects of Glucose on Glucose Transporter Expression and Cellular Location in Muscle. In: Östenson, C.G., Efendić, S., Vranic, M. (eds) New Concepts in the Pathogenesis of NIDDM. Advances in Experimental Medicine and Biology, vol 334. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2910-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2910-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6262-3

  • Online ISBN: 978-1-4615-2910-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics