Skip to main content

High-Throughput Translational Medicine: Challenges and Solutions

  • Chapter
  • First Online:
Systems Analysis of Human Multigene Disorders

Abstract

Recent technological advances in genomics now allow producing biological data at unprecedented tera- and petabyte scales. Yet, the extraction of useful knowledge from this voluminous data presents a significant challenge to a scientific community. Efficient mining of vast and complex data sets for the needs of biomedical research critically depends on seamless integration of clinical, genomic, and experimental information with prior knowledge about genotype–phenotype relationships accumulated in a plethora of publicly available databases. Furthermore, such experimental data should be accessible to a variety of algorithms and analytical pipelines that drive computational analysis and data mining. Translational projects require sophisticated approaches that coordinate and perform various analytical steps involved in the extraction of useful knowledge from accumulated clinical and experimental data in an orderly semiautomated manner. It presents a number of challenges such as (1) high-throughput data management involving data transfer, data storage, and access control; (2) scalable computational infrastructure; and (3) analysis of large-scale multidimensional data for the extraction of actionable knowledge.

We present a scalable computational platform based on crosscutting requirements from multiple scientific groups for data integration, management, and analysis. The goal of this integrated platform is to address the challenges and to support the end-to-end analytical needs of various translational projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ranganathan S, Schönbach C, Kelso J, Rost B, Nathan S, Tan TW (2011) Towards big data science in the decade ahead from ten years of InCoB and the 1st ISCB-Asia Joint Conference. BMC Bioinforma 12(Suppl 13):S1. doi:10.1186/1471-2105-12-S13-S1

    Google Scholar 

  2. Chen J, Qian F, Yan W, Shen B (2013) Translational biomedical informatics in the cloud: present and future. Biomed Res Int 2013:658925. doi:10.1155/2013/658925

    PubMed  Google Scholar 

  3. Payne PR, Embi PJ, Sen CK (2009) Translational informatics: enabling high-throughput research paradigms. Physiol Genomics 39(3):131–140. doi:10.1152/physiolgenomics.00050.2009

    PubMed  Google Scholar 

  4. Schuler R, Smith DE, Kumaraguruparan G, Chervenak A, Lewis AD, Hyde DM et al (2012) A flexible, open, decentralized system for digital pathology networks. Stud Health Technol Inform 175:29–38 [Research Support, N.I.H., Extramural]

    PubMed  Google Scholar 

  5. Boyd LB, Hunicke-Smith SP, Stafford GA, Freund ET, Ehlman M, Chandran U, Dennis R, Fernandez AT, Goldstein S, Steffen D, Tycko B, Klemm JD (2011) The caBIG® life science business architecture model. Bioinformatics 27(10):1429–1435. doi:10.1093/bioinformatics/btr141

    PubMed  CAS  Google Scholar 

  6. Hillman-Jackson J, Clements D, Blankenberg D, Taylor J, Nekrutenko A, Galaxy Team (2012) Using Galaxy to perform large-scale interactive data analyses. Curr Protoc Bioinformatics; Chapter 10:Unit10.5. doi:10.1002/0471250953.bi1005s38

  7. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F et al (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24(5):537–544 [Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  8. Knaup P et al (2004) Towards clinical bioinformatics: advancing genomic medicine with informatics methods and tools. Methods Inf Med 43(3):302–307

    PubMed  CAS  Google Scholar 

  9. Desai AN, Jere A (2012) Next-generation sequencing: ready for the clinics? Clin Genet 81(6):503–510

    PubMed  CAS  Google Scholar 

  10. Bill BR, Geschwind DH (2009) Genetic advances in autism: heterogeneity and convergence on shared pathways. Curr Opin Genet Dev 19(3):271–278

    PubMed  CAS  Google Scholar 

  11. Iossifov I, Zheng T, Baron M, Gilliam TC, Rzhetsky A (2008) Genetic-linkage mapping of complex hereditary disorders to a whole-genome molecular-interaction network. Genome Res 18(7):1150–1162. doi:10.1101/gr.075622.107, Epub 2008 Apr 16. PubMed PMID: 18417725; PubMed Central PMCID: PMC2493404

    PubMed  CAS  Google Scholar 

  12. Sarnyai Z, Alsaif M, Bahn S, Ernst A, Guest PC, Hradetzky E, Kluge W, Stelzhammer V, Wesseling H (2011) Behavioral and molecular biomarkers in translational animal models for neuropsychiatric disorders. Int Rev Neurobiol 101:203–238. doi:10.1016/B978-0-12-387718-5.00008-0, Review. PubMed PMID: 22050853

    PubMed  CAS  Google Scholar 

  13. de Mooij-van Malsen AJ, Vinkers CH, Peterse DP, Olivier B, Kas MJ (2011) Cross-species behavioural genetics: a starting point for unravelling the neurobiology of human psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 35(6):1383–1390. doi:10.1016/j.pnpbp.2010.10.003, Epub 2010 Oct 16. Review. PubMed PMID: 20955750

    PubMed  Google Scholar 

  14. Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP (2010) Computational solutions to large-scale data management and analysis. Nat Rev Genet 11(9):647–657

    PubMed  CAS  Google Scholar 

  15. Broad Institute Best Practice Variant Detection. http://gatkforums.broadinstitute.org/discussion/1186/best-practice-variant-detection-with-the-gatk-v4-for-release-2-0

  16. McKenna A et al (2010) The genome analysis toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    PubMed  CAS  Google Scholar 

  17. Li H, Durbin R (2010) Fast and accurate long-read alignment with burrows–wheeler transform. Bioinformatics 26(5):589–595

    PubMed  Google Scholar 

  18. Goecks J, Nekrutenko A, Taylor J, Galaxy Team (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86

    PubMed  Google Scholar 

  19. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, Soiland-Reyes S, Dunlop I, Nenadic A, Fisher P, Bhagat J, Belhajjame K, Bacall F, Hardisty A, Nieva de la Hidalga A, Balcazar Vargas MP, Sufi S, Goble C (2013) The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids Res, First published online 2 May 2013. doi:10.1093/nar/gkt328

  20. Kulikova T et al (2007) EMBL Nucleotide Sequence Database in 2006. Nucleic Acids Res 35:D16–D20

    PubMed  CAS  Google Scholar 

  21. Karolchik D, Hinrichs AS, Kent WJ (2012) The UCSC Genome Browser. Curr Protoc Bioinformatics; Chapter 1:Unit1.4. doi:10.1002/0471250953.bi0104s40. PubMed PMID: 23255150

  22. Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, Wong MC, Maddren M, Fang R, Heitner SG, Lee BT, Barber GP, Harte RA, Diekhans M, Long JC, Wilder SP, Zweig AS, Karolchik D, Kuhn RM, Haussler D, Kent WJ (2013) ENCODE data in the UCSC genome browser: year 5 update. Nucleic Acids Res 41(Database issue):D56–D63. doi:10.1093/nar/gks1172, Epub 2012 Nov 27. PubMed PMID: 23193274; PubMed Central PMCID: PMC3531152

    PubMed  CAS  Google Scholar 

  23. NCBI Resource Coordinators (2013) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 41(Database issue):D8–D20. doi:10.1093/nar/gks1189, Epub 2012 Nov 27. PubMed PMID: 23193264; PubMed Central PMCID: PMC3531099

    Google Scholar 

  24. UniProt Consortium (2013) Update on activities at the universal protein resource (UniProt) in 2013. Nucleic Acids Res 41(Database issue):D43–D47. doi:10.1093/nar/gks1068, Epub 2012 Nov 17. PubMed PMID: 23161681; PubMed Central PMCID: PMC3531094

    Google Scholar 

  25. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35(Database issue):D61–D65, Epub 2006 Nov 27. PubMed PMID: 17130148; PubMed Central PMCID: PMC1716718

    PubMed  CAS  Google Scholar 

  26. Hermjakob H et al (2004) The HUPO PSI’s molecular interaction format–a community standard for the representation of protein interaction data. Nat Biotechnol 22(2):177–183

    PubMed  CAS  Google Scholar 

  27. Vastrik I, D’Eustachio P, Schmidt E, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol 8(3):R39

    PubMed  Google Scholar 

  28. BioCarta Pathways. http://biocarta.com/

  29. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Yeast 17(1):48–55

    Google Scholar 

  30. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH (2009) PID: the Pathway Interaction Database. Nucleic Acids Res 37:D674–D679

    PubMed  CAS  Google Scholar 

  31. BioPAX-Consortium (2006) BioPAX: biological pathways exchange. http://www.biopax.org/

  32. Online Mendelian Inheritance in Man (OMIM). http://www.ncbi.nlm.nih.gov/omim/

  33. Mottaz A, Yip YL, Ruch P, Veuthey AL (2008) Mapping proteins to disease terminologies: from UniProt to MeSH. BMC Bioinforma 9(Suppl 5):S3

    Google Scholar 

  34. Disease ontology. http://diseaseontology.sourceforge.net/

  35. Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S (2008) The HUMAN Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet 83(5):610–615

    PubMed  CAS  Google Scholar 

  36. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39(Database issue):D1035–D1041, PMID: 21059682

    PubMed  CAS  Google Scholar 

  37. Davis AP, Wiegers TC, Johnson RJ, Lay JM, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D, Murphy CG, Mattingly CJ (2013) Text mining effectively scores and ranks the literature for improving chemical-gene-disease curation at the comparative toxicogenomics database. PLoS One 8(4):e58201. doi:10.1371/journal.pone.0058201

    PubMed  CAS  Google Scholar 

  38. Kanehisa M (1997) Linking databases and organisms: GenomeNet resources in Japan. Trends Biochem Sci 22(11):442–444, Review. PubMed PMID: 9397687

    PubMed  CAS  Google Scholar 

  39. Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH (2010) The NCBI BioSystems database. Nucleic Acids Res 38(Database issue):D492–D496. doi:10.1093/nar/gkp858, Epub 2009 Oct 23. PubMed PMID: 19854944; PubMed Central PMCID: PMC2808896

    PubMed  CAS  Google Scholar 

  40. Wilming LG, Gilbert JG, Howe K, Trevanion S, Hubbard T, Harrow JL (2008) The vertebrate genome annotation (Vega) database. Nucleic Acids Res 36(Database issue):D753–D760, Epub 2007 Nov 14. PubMed PMID: 18003653; PubMed Central PMCID: PMC2238886

    PubMed  CAS  Google Scholar 

  41. Altshuler DM, Gibbs RA, Peltonen L et al (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467(7311):52–58. doi:10.1038/nature09298, PubMed PMID: 20811451; PubMed Central PMCID: PMC3173859

    PubMed  CAS  Google Scholar 

  42. Buchanan CC, Torstenson ES, Bush WS, Ritchie MD (2012) A comparison of cataloged variation between International HapMap Consortium and 1000 Genomes Project data. J Am Med Inform Assoc 19(2):289–294. doi:10.1136/amiajnl-2011-000652, PubMed PMID: 22319179; PubMed Central PMCID: PMC3277631

    PubMed  Google Scholar 

  43. Maher B (2012) ENCODE: the human encyclopaedia. Nature 489(7414):46–48, PubMed PMID: 22962707

    PubMed  Google Scholar 

  44. ENCODE Project Consortium, Dunham I, Kundaje A, Aldred SF, Collins PJ et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. doi:10.1038/nature11247. PubMed PMID: 22955616; PubMed Central PMCID: PMC3439153

    Google Scholar 

  45. Pennisi E (2012) Genomics. ENCODE project writes eulogy for junk DNA. Science 337(6099):1159, 1161. doi:10.1126/science.337.6099.1159. PubMed PMID: 22955811

    Google Scholar 

  46. Hardison RC (2003) Comparative genomics. PLoS Biol 1(2):E58

    PubMed  Google Scholar 

  47. Cheng JF, Priest JR, Pennacchio LA (2007) Comparative genomics: a tool to functionally annotate human DNA. Methods Mol Biol 366:229–251

    PubMed  CAS  Google Scholar 

  48. da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13

    Google Scholar 

  49. Curtis RK, Oresic M, Vidal-Puig A (2005) Pathways to the analysis of microarray data. Trends Biotechnol 23(8):429–435

    PubMed  CAS  Google Scholar 

  50. Khatri P, Draghici S (2005) Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21(18):3587–3595

    PubMed  CAS  Google Scholar 

  51. Rivals I, Personnaz L, Taing L, Potier MC (2007) Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 23(4):401–407 [Evaluation Studies]

    PubMed  CAS  Google Scholar 

  52. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    PubMed  CAS  Google Scholar 

  53. Doncheva NT, Kacprowski T, Albrecht M (2012) Recent approaches to the prioritization of candidate disease genes. Wiley Interdiscip Rev Syst Biol Med 4(5):429–442 [Research Support, Non-U.S. Gov’t Review]

    PubMed  CAS  Google Scholar 

  54. Moreau Y, Tranchevent LC (2012) Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev Genet 13(8):523–536

    PubMed  CAS  Google Scholar 

  55. Tranchevent LC, Barriot R, Yu S, Van Vooren S, Van Loo P, Coessens B et al (2008) ENDEAVOUR update: a web resource for gene prioritization in multiple species. Nucleic Acids Res 36(Web Server issue):W377–W384 [Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  56. Pers TH, Dworzyñski P, Thomas CE, Lage K, Brunak S (2013) MetaRanker 2.0: a web server for prioritization of genetic variation data. Nucleic Acids Res 41(Web Server issue):W104–W108

    PubMed  Google Scholar 

  57. Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37(Web Server issue):W305–W311 [Research Support, N.I.H., Extramural]

    PubMed  CAS  Google Scholar 

  58. Tranchevent LC, Capdevila FB, Nitsch D, De Moor B, De Causmaecker P, Moreau Y (2011) A guide to web tools to prioritize candidate genes. Brief Bioinform 12(1):22–32 [Research Support, Non-U.S. Gov’t Review]

    PubMed  CAS  Google Scholar 

  59. Tiffin N, Adie E, Turner F, Brunner HG, van Driel MA, Oti M et al (2006) Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res 34(10):3067–3081 [Evaluation Studies Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  60. Tiffin N, Andrade-Navarro MA, Perez-Iratxeta C (2009) Linking genes to diseases: it’s all in the data. Genome Med 1(8):77

    PubMed  Google Scholar 

  61. Kohler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82(4):949–958 [Evaluation Studies Research Support, Non-U.S. Gov’t]

    PubMed  Google Scholar 

  62. Börnigen D, Tranchevent LC, Bonachela-Capdevila F, Devriendt K, De Moor B, De Causmaecker P et al (2012) An unbiased evaluation of gene prioritization tools. Bioinformatics 28(23):3081–3088 [Research Support, Non-U.S. Gov’t]

    PubMed  Google Scholar 

  63. Foster I (2011) Globus online: accelerating and democratizing science through cloud-based services. IEEE Internet Comput 15:70–73

    Google Scholar 

  64. Dubey A, Wagle D (2007) Delivering software as a service. The McKinsey Quarterly 6:1–12

    Google Scholar 

  65. Waters B (2005) Software as a service: a look at the customer benefits. J Digit Asset Manag 1(1):32–39

    Google Scholar 

  66. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32(Web Server issue):W273–W279

    PubMed  CAS  Google Scholar 

  67. Lukashin I, Novichkov P, Boffelli D, Paciorkowski AR, Minovitsky S, Yang S, Dubchak I (2011) VISTA Region Viewer (RViewer)–a computational system for prioritizing genomic intervals for biomedical studies. Bioinformatics 27(18):2595–2597

    PubMed  CAS  Google Scholar 

  68. Visel A, Minovitsky S, Dubchak I, Pennacchio LA (2007) VISTA Enhancer Browser–a database of tissue-specific human enhancers. Nucleic Acids Res 35(Database issue):D88–D92

    PubMed  CAS  Google Scholar 

  69. Foster I, Kesselman C, Tsudik G, Tuecke SA (1998) Security architecture for computational grids. 5th ACM conference on computer and communications security conference, 1998, San Francisco, CA, USA pp 83–92

    Google Scholar 

  70. Amazon Web Services. http://aws.amazon.com

  71. Litzkow M, Livny M, Mutka M (1998) Condor – a hunter of idle workstations. Proceedings of the 8th international conference of distributed computing systems, June 1988, San Jose, CA, USA pp 104–111

    Google Scholar 

  72. Foster I, Kesselman C, Tuecke S (2001) The Anatomy of the Grid: Enabling Scalable Virtual Organizations. Int J Supercomput Appl 15(3):200–222

    Google Scholar 

  73. Gotea V, Visel A, Westlund JM, Nobrega MA, Pennacchio LA, Ovcharenko I (2010) Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. Genome Res 20(5):565–577

    PubMed  CAS  Google Scholar 

  74. Gene Ontology Consortium (2006) The gene ontology (GO) project in 2006. Nucleic Acids Res 34:D322–D326

    Google Scholar 

  75. Rzhetsky A et al (2004) GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data. J Biomed Inform 37(1):43–53

    PubMed  CAS  Google Scholar 

  76. Nitsch D, Tranchevent LC, Goncalves JP, Vogt JK, Madeira SC, Moreau Y (2011) PINTA: a web server for network-based gene prioritization from expression data. Nucleic Acids Res 39(Web Server issue):W334–W338 [Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  77. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568 [Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  78. Padmanabhan R (2006) Etiology, pathogenesis and prevention of neural tube defects. Congenital anomalies 46(2):55–67

    PubMed  CAS  Google Scholar 

  79. Mitchell LE, Adzick NS, Melchionne J, Pasquariello PS, Sutton LN, Whitehead AS (2004) Spina bifida. Lancet 364(9448):1885–1895. doi:10.1016/S0140-6736(04)17445-X, ISSN 0140-6736

    PubMed  Google Scholar 

  80. Boyles AL, Billups AV, Deak KL, Siegel DG, Mehltretter L, Slifer SH et al (2006) Neural tube defects and folate pathway genes: family-based association tests of gene-gene and gene-environment interactions. Environ Health Perspect 114(10):1547–1552 [Research Support, N.I.H., Extramural]

    PubMed  CAS  Google Scholar 

  81. Ross ME (2010) Gene-environment interactions, folate metabolism and the embryonic nervous system. Wiley Interdiscip Rev Syst Biol Med 2(4):471–480

    PubMed  CAS  Google Scholar 

  82. Wu G, Huang X, Hua Y, Mu D (2011) Roles of planar cell polarity pathways in the development of neural [correction of neutral] tube defects. J Biomed Sci 18:66

    PubMed  CAS  Google Scholar 

  83. Wen S, Zhu H, Lu W, Mitchell LE, Shaw GM, Lammer EJ et al (2010) Planar cell polarity pathway genes and risk for spina bifida. Am J Med Genet A 152A(2):299–304

    PubMed  CAS  Google Scholar 

  84. Harris MJ, Juriloff DM (2007) Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. Birth Defects Res A Clin Mol Teratol 79(3):187–210

    PubMed  CAS  Google Scholar 

  85. Harris MJ, Juriloff DM (2010) An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res A Clin Mol Teratol 88(8):653–669

    PubMed  CAS  Google Scholar 

  86. Kozyraki R, Fyfe J, Kristiansen M, Gerdes C, Jacobsen C, Cui S et al (1999) The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein. Nat Med 5(6):656–661 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]

    PubMed  CAS  Google Scholar 

  87. Wahlstedt-Froberg V, Pettersson T, Aminoff M, Dugue B, Grasbeck R (2003) Proteinuria in cubilin-deficient patients with selective vitamin B12 malabsorption. Pediatr Nephrol 18(5):417–421 [Research Support, Non-U.S. Gov’t]

    PubMed  Google Scholar 

  88. Franke B, Vermeulen SH, Steegers-Theunissen RP, Coenen MJ, Schijvenaars MM, Scheffer H et al (2009) An association study of 45 folate-related genes in spina bifida: Involvement of cubilin (CUBN) and tRNA aspartic acid methyltransferase 1 (TRDMT1). Birth Defects Res A Clin Mol Teratol 85(3):216–226 [Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  89. Aminoff M, Carter JE, Chadwick RB, Johnson C, Grasbeck R, Abdelaal MA et al (1999) Mutations in CUBN, encoding the intrinsic factor-vitamin B12 receptor, cubilin, cause hereditary megaloblastic anaemia 1. Nat Genet 21(3):309–313 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]

    PubMed  CAS  Google Scholar 

  90. Whitehead VM (2006) Acquired and inherited disorders of cobalamin and folate in children. Br J Haematol 134(2):125–136

    PubMed  CAS  Google Scholar 

  91. Andersson ER, Bryjova L, Biris K, Yamaguchi TP, Arenas E, Bryja V (2010) Genetic interaction between Lrp6 and Wnt5a during mouse development. Dev Dyn 239:237–245. doi:10.1002/dvdy.22101

    PubMed  CAS  Google Scholar 

  92. Gray JD, Nakouzi G, Slowinska-Castaldo B, Dazard J-E, Sunil Rao J, Nadeau JH et al (2010) Functional interactions between the LRP6 WNT co-receptor and folate supplementation. Hum Mol Genet 19(23):4560–4572

    PubMed  CAS  Google Scholar 

  93. Lefebvre C, Rieckhof G, Califano A (2012) Reverse-engineering human regulatory networks. Wiley Interdiscip Rev Syst Biol Med 4(4):311–325 [Review]

    PubMed  CAS  Google Scholar 

  94. Tkacik G, Walczak AM (2011) Information transmission in genetic regulatory networks: a review. J Phys Condens Matter 23(15):153102 [Review]

    PubMed  Google Scholar 

  95. Kirouac DC, Saez-Rodriguez J, Swantek J, Burke JM, Lauffenburger DA, Sorger PK (2012) Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks. BMC Syst Biol 6:29 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]

    PubMed  Google Scholar 

  96. Guan Y, Gorenshteyn D, Burmeister M, Wong AK, Schimenti JC, Handel MA et al (2012) Tissue-specific functional networks for prioritizing phenotype and disease genes. PLoS Comput Biol 8(9):e1002694 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]

    PubMed  CAS  Google Scholar 

  97. Rzhetsky A, Wajngurt D, Park N, Zheng T (2007) Probing genetic overlap among complex human phenotypes. Proc Natl Acad Sci U S A 104(28):11694–11699

    PubMed  CAS  Google Scholar 

  98. Oti M, Brunner HG (2007) The modular nature of genetic diseases. Clin Genet 71(1):1–11 [Research Support, Non-U.S. Gov’t Review]

    PubMed  CAS  Google Scholar 

  99. Oti M, Huynen MA, Brunner HG (2008) Phenome connections. Trends Genet 24(3):103–106

    PubMed  CAS  Google Scholar 

  100. Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144(6):986–998 [Research Support, N.I.H., Extramural Review]

    PubMed  CAS  Google Scholar 

  101. Piro RM, Ala U, Molineris I, Grassi E, Bracco C, Perego GP et al (2011) An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction. Eur J Hum Genet 19(11):1173–1180 [Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  102. Wysocki K, Ritter L (2011) Diseasome: an approach to understanding gene-disease interactions. Annu Rev Nurs Res 29:55–72 [Review]

    PubMed  Google Scholar 

  103. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3 [Research Support, U.S. Gov’t, P.H.S.]

    PubMed  Google Scholar 

  104. Kokocinski F, Delhomme N, Wrobel G, Hummerich L, Toedt G, Lichter P (2005) FACT–a framework for the functional interpretation of high-throughput experiments. BMC Bioinforma 6:161 [Evaluation Studies Research Support, Non-U.S. Gov’t]

    Google Scholar 

  105. Robinson MD, Grigull J, Mohammad N, Hughes TR (2002) FunSpec: a web-based cluster interpreter for yeast. BMC Bioinforma 3:35 [Research Support, Non-U.S. Gov’t]

    Google Scholar 

  106. Castillo-Davis CI, Hartl DL (2003) GeneMerge–post-genomic analysis, data mining, and hypothesis testing. Bioinformatics 19(7):891–892

    PubMed  CAS  Google Scholar 

  107. Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M et al (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4(4):R28 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]

    PubMed  Google Scholar 

  108. Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, Conklin BR (2003) MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol 4(1):R7 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]

    PubMed  Google Scholar 

  109. Khatri P, Draghici S, Ostermeier GC, Krawetz SA (2002) Profiling gene expression using onto-express. Genomics 79(2):266–270 [Evaluation Studies Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]

    PubMed  CAS  Google Scholar 

  110. Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33(Web Server issue):W741–W748 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]

    PubMed  CAS  Google Scholar 

  111. Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, Elnakady YA et al (2007) GeneTrail–advanced gene set enrichment analysis. Nucleic Acids Res 35(Web Server issue):W186–W192 [Research Support, Non-U.S. Gov’t]

    PubMed  Google Scholar 

  112. Gupta P, Yoshida R, Imoto S, Yamaguchi R, Miyano S (2007) Statistical absolute evaluation of gene ontology terms with gene expression data. In: MƒÉndoiu I, Zelikovsky A (eds) Bioinformatics research and applications. Springer, Berlin, pp 146–157

    Google Scholar 

  113. Bauer S, Grossmann S, Vingron M, Robinson PN (2008) Ontologizer 2.0 – a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics 24(14):1650–1651

    PubMed  CAS  Google Scholar 

  114. Antonov AV, Schmidt T, Wang Y, Mewes HW (2008) ProfCom: a web tool for profiling the complex functionality of gene groups identified from high-throughput data. Nucleic Acids Res 36(Web Server issue):W347–W351 [Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  115. Alexa A, Rahnenfuhrer J, Lengauer T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22(13):1600–1607 [Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  116. Naidoo N, Pawitan Y, Soong R, Cooper DN, Ku CS (2011) Human genetics and genomics a decade after the release of the draft sequence of the human genome. Hum Genomics 5(6):577–622, Review. PubMed PMID: 22155605; PubMed Central PMCID: PMC3525251

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported in part by Mr. and Mrs. Lawrence Hilibrand, the Boler Family Foundation, and NIH/NINDS grant NS050375—The Genetic Basis of Mid-Hindbrain Malformations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinanath Sulakhe or Natalia Maltsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sulakhe, D. et al. (2014). High-Throughput Translational Medicine: Challenges and Solutions. In: Maltsev, N., Rzhetsky, A., Gilliam, T. (eds) Systems Analysis of Human Multigene Disorders. Advances in Experimental Medicine and Biology, vol 799. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8778-4_3

Download citation

Publish with us

Policies and ethics