Skip to main content

Abstract

Acid–base homeostasis is fundamental to normal health and development, and the renal contribution is central to this process. Acid–base homeostasis involves regulated reabsorption of filtered bicarbonate and generation of new bicarbonate. The latter process involves titratable acid excretion, organic anion excretion, and intrarenal ammoniagenesis and urinary ammonia excretion. Bicarbonate reabsorption predominantly occurs in the proximal tubule, with lesser rates in the thick ascending limb of the loop of Henle and the collecting duct, the regulation mechanisms of which differ in different nephron/collecting duct segments. Titratable acid excretion involves buffering of secreting H+ by intraluminal buffers, of which phosphate is the primary component. Renal urinary ammonia excretion involves regulated ammoniagenesis, primarily utilizing glutamine as a source molecule, and involves regulated transport in multiple renal epithelial cell sites. This chapter summarizes the fundamental mechanisms and regulation of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boron WF. Acid-base transport by the renal proximal tubule. J Am Soc Nephrol. 2006;17:2368–82.

    PubMed  CAS  Google Scholar 

  2. Quigley R, Baum M. Developmental changes in rabbit proximal straight tubule paracellular permeability. Am J Physiol Renal Physiol. 2002;283:F525–31.

    PubMed  CAS  Google Scholar 

  3. Liu FY, Cogan MG. Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. Modes of action, mechanism, and kinetics. J Clin Invest. 1988;82:601–7.

    PubMed  CAS  Google Scholar 

  4. Zhou Y, Zhao J, Bouyer P, Boron WF. Evidence from renal proximal tubules that HCO3- and solute reabsorption are acutely regulated not by pH but by basolateral HCO3- and CO2. Proc Natl Acad Sci U S A. 2005;102:3875–80.

    PubMed  CAS  Google Scholar 

  5. Ambuhl PM, Amemiya M, Danczkay M, et al. Chronic metabolic acidosis increases NHE3 protein abundance in rat kidney. Am J Physiol. 1996;271:F917–25.

    PubMed  CAS  Google Scholar 

  6. Kwon TH, Fulton C, Wang W, et al. Chronic metabolic acidosis upregulates rat kidney Na-HCO cotransporters NBCn1 and NBC3 but not NBC1. Am J Physiol Renal Physiol. 2002;282:F341–51.

    PubMed  Google Scholar 

  7. Wang T. Flow-activated transport events along the nephron. Curr Opin Nephrol Hypertens. 2006;15:530–6.

    PubMed  Google Scholar 

  8. Schuster VL, Kokko JP, Jacobson HR. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J Clin Invest. 1984;73:507–15.

    PubMed  CAS  Google Scholar 

  9. Nagami GT, Kraut JA. Acid-base regulation of angiotensin receptors in the kidney. Curr Opin Nephrol Hypertens. 2010;19:91–7.

    PubMed  CAS  Google Scholar 

  10. Rector Jr FC, Bloomer HA, Seldin DW. Effect of potassium deficiency on the reabsorption of bicarbonate in the proximal tubule of the rat kidney. J Clin Invest. 1964;43:1976.

    PubMed  CAS  Google Scholar 

  11. Chan YL, Biagi B, Giebisch G. Control mechanisms of bicarbonate transport across the rat proximal convoluted tubule. Am J Physiol Renal Physiol. 1982;242:F532–43.

    CAS  Google Scholar 

  12. Elkjar ML, Kwon TH, Wang W, et al. Altered expression of renal NHE3, TSC, BSC-1, and ENaC subunits in potassium-depleted rats. Am J Physiol Renal Physiol. 2002;283:F1376–88.

    Google Scholar 

  13. Fryer JN, Burns KD, Ghorbani M, Levine DZ. Effect of potassium depletion on proximal tubule AT1 receptor localization in normal and remnant rat kidney. Kidney Int. 2001;60:1792–9.

    PubMed  CAS  Google Scholar 

  14. Laghmani K, Preisig PA, Moe OW, Yanagisawa M, Alpern RJ. Endothelin-1/endothelin-B receptor-mediated increases in NHE3 activity in chronic metabolic acidosis. J Clin Invest. 2001;107:1563–9.

    PubMed  CAS  Google Scholar 

  15. Sasaki S, Marumo F. Mechanisms of inhibition of proximal acidification by PTH. Am J Physiol Renal Physiol. 1991;260:F833–8.

    CAS  Google Scholar 

  16. Kinsella JL, Aronson PS. Interaction of NH4+ and Li  +  with the renal microvillus membrane Na  +  -H  +  exchanger. Am J Physiol. 1981;241:C220–6.

    PubMed  CAS  Google Scholar 

  17. McDonough AA, Biemesderfer D. Does membrane trafficking play a role in regulating the sodium/hydrogen exchanger isoform 3 in the proximal tubule? Curr Opin Nephrol Hypertens. 2003;12:533–41.

    PubMed  CAS  Google Scholar 

  18. Wang T, Yang CL, Abbiati T, et al. Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice. Am J Physiol. 1999;277:F298–302.

    PubMed  CAS  Google Scholar 

  19. Brown D, Paunescu TG, Breton S, Marshansky V. Regulation of the V-ATPase in kidney epithelial cells: dual role in acid-base homeostasis and vesicle trafficking. J Exp Biol. 2009;212:1762–72.

    PubMed  CAS  Google Scholar 

  20. Romero MF. Molecular pathophysiology of SLC4 bicarbonate transporters. Curr Opin Nephrol Hypertens. 2005;14:495–501.

    PubMed  CAS  Google Scholar 

  21. Pushkin A, Kurtz I. SLC4 Base (HCO3-, CO32-) transporters: classification, function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol. 2006;290:F580–99.

    PubMed  CAS  Google Scholar 

  22. Espiritu DJD, Yang VL, Bernardo AA, Arruda JAL. Regulation of renal Na+/HCO3- cotransporter stimulation by CO2: role of phosphorylation, exocytosis and protein synthesis. J Membr Biol. 2004;199:39–49.

    PubMed  CAS  Google Scholar 

  23. Purkerson JM, Schwartz GJ. The role of carbonic anhydrases in renal physiology. Kidney Int. 2007;71:103–15.

    PubMed  CAS  Google Scholar 

  24. Capasso G, Unwin R, Rizzo M, Pica A, Giebisch G. Bicarbonate transport along the loop of Henle: molecular mechanisms and regulation. J Nephrol. 2002;15 Suppl 5:S88–96.

    PubMed  CAS  Google Scholar 

  25. Weinstein AM, Krahn TA. A mathematical model of rat ascending Henle limb. II. Epithelial function. Am J Physiol Renal Physiol. 2009;298:F525–42.

    PubMed  Google Scholar 

  26. Good DW. Inhibition of bicarbonate absorption by peptide hormones and cyclic adenosine monophosphate in rat medullary thick ascending limb. J Clin Invest. 1990;85:1006–13.

    PubMed  CAS  Google Scholar 

  27. Good DW, George T, Watts III BA. Lipopolysaccharide directly alters renal tubule transport through distinct TLR4-dependent pathways in basolateral and apical membranes. Am J Physiol Renal Physiol. 2009;297:F866–74.

    PubMed  CAS  Google Scholar 

  28. Good DW, Di Mari JF, Watts III BA. Hyposmolality stimulates Na(+)/H(+) exchange and HCO(3)(-) absorption in thick ascending limb via PI 3-kinase. Am J Physiol Cell Physiol. 2000;279:C1443–54.

    PubMed  CAS  Google Scholar 

  29. Good DW, George T, Watts III BA. Basolateral membrane Na+/H  +  exchange enhances HCO3- absorption in rat medullary thick ascending limb: evidence for functional coupling between basolateral and apical membrane Na+/H  +  exchangers. Proc Natl Acad Sci U S A. 1995;92:12525–9.

    PubMed  CAS  Google Scholar 

  30. Wang T, Hropot M, Aronson PS, Giebisch G. Role of NHE isoforms in mediating bicarbonate reabsorption along the nephron. Am J Physiol Renal Physiol. 2001;281:F1117–22.

    PubMed  CAS  Google Scholar 

  31. Weinstein AM. A mathematical model of rat distal convoluted tubule. I. Cotransporter function in early DCT. Am J Physiol Renal Physiol. 2005;289:F699–720.

    PubMed  CAS  Google Scholar 

  32. Blake-Palmer KG, Karet FE. Cellular physiology of the renal H  +  ATPase. Curr Opin Nephrol Hypertens. 2009;18:433–8.

    PubMed  CAS  Google Scholar 

  33. Gumz ML, Lynch IJ, Greenlee MM, Cain BD, Wingo CS. The renal H  +  -K  +  -ATPases: physiology, regulation, and structure. Am J Physiol Renal Physiol. 2010;298:F12–21.

    PubMed  CAS  Google Scholar 

  34. Kobayashi KATS, Uchida SHIN, Mizutani SHUK, Sasaki SEI, Marumo FUMI. Intrarenal and cellular localization of CLC-K2 protein in the mouse kidney. J Am Soc Nephrol. 2001;12:1327–34.

    PubMed  CAS  Google Scholar 

  35. Kobayashi K, Uchida S, Okamura HO, Marumo F, Sasaki S. Human CLC-KB gene promoter drives the EGFP expression in the specific distal nephron segments and inner ear. J Am Soc Nephrol. 2002;13:1992–8.

    PubMed  CAS  Google Scholar 

  36. Kim J, Tisher CC, Linser PJ, Madsen KM. Ultrastructural localization of carbonic anhydrase II in subpopulations of intercalated cells of the rat ­kidney. J Am Soc Nephrol. 1990;1:245–56.

    PubMed  CAS  Google Scholar 

  37. Wall SM. Recent advances in our understanding of intercalated cells. Curr Opin Nephrol Hypertens. 2005;14:480–4.

    PubMed  CAS  Google Scholar 

  38. Weiner ID, Milton AE. H  +  -K  +  -ATPase in rabbit cortical collecting duct B-type intercalated cell. Am J Physiol. 1996;270:F518–30.

    PubMed  CAS  Google Scholar 

  39. Lynch IJ, Rudin A, Xia SL, et al. Impaired acid secretion in cortical collecting duct intercalated cells from H, K-ATPase-deficient mice: role of HK isoforms. Am J Physiol Renal Physiol. 2008;294:F621–7.

    PubMed  CAS  Google Scholar 

  40. Weiner ID, Weill AE, New AR. Distribution of Cl-/HCO3- exchange and intercalated cells in the rabbit cortical collecting duct. Am J Physiol. 1994;267:F952–64.

    PubMed  CAS  Google Scholar 

  41. Song HK, Kim WY, Lee HW, et al. Origin and fate of pendrin-positive intercalated cells in developing mouse kidney. J Am Soc Nephrol. 2007;18:2672–82.

    PubMed  Google Scholar 

  42. Kleinman JG, Bain JL, Fritsche C, Riley DA. Histochemical carbonic anhydrase in rat inner medullary collecting duct. J Histochem Cytochem. 1992;40:1535–45.

    PubMed  CAS  Google Scholar 

  43. Weill AE, Tisher CC, Conde MF, Weiner ID. Mechanisms of bicarbonate transport by cultured rabbit inner medullary collecting duct cells. Am J Physiol. 1994;266:F466–76.

    PubMed  CAS  Google Scholar 

  44. Tsuruoka S, Schwartz GJ. Mechanisms of HCO(-)(3) secretion in the rabbit connecting segment. Am J Physiol. 1999;277:F567–74.

    PubMed  CAS  Google Scholar 

  45. McKinney TD, Burg MB. Bicarbonate transport by rabbit cortical collecting tubules. Effect of acid and alkali loads in vivo on transport in vitro. J Clin Invest. 1977;60:766–8.

    PubMed  CAS  Google Scholar 

  46. Wall SM, Knepper MA. Acid-base transport in the inner medullary collecting duct. Semin Nephrol. 1990;10:148–58.

    PubMed  CAS  Google Scholar 

  47. Tsuruoka S, Schwartz GJ. HCO3- Absorption in rabbit outer medullary collecting duct: role of luminal carbonic anhydrase. Am J Physiol. 1998;274:F139–47.

    PubMed  CAS  Google Scholar 

  48. Purkerson JM, Schwartz GJ. Expression of membrane-associated carbonic anhydrase isoforms IV, IX, XII, and XIV in the rabbit: induction of CA IV and IX during maturation. Am J Physiol Regul Integr Comp Physiol. 2005;288:R1256–63.

    PubMed  CAS  Google Scholar 

  49. Verlander JW, Madsen KM, Cannon JK, Tisher CC. Activation of acid-secreting intercalated cells in rabbit collecting duct with ammonium chloride loading. Am J Physiol. 1994;266:F633–45.

    PubMed  CAS  Google Scholar 

  50. Weiner ID, Frank AE, Wingo CS. Apical proton secretion by the inner stripe of the outer medullary collecting duct. Am J Physiol Renal Physiol. 1999;276:F606–13.

    CAS  Google Scholar 

  51. Wingo CS, Madsen KM, Smolka A, Tisher CC. H-K-ATPase immunoreactivity in cortical and outer medullary collecting duct. Kidney Int. 1990;38:985–90.

    PubMed  CAS  Google Scholar 

  52. Kraut JA, Helander KG, Helander HF, Iroezi ND, Marcus EA, Sachs G. Detection and localization of H  +  -K  +  -ATPase isoforms in human kidney. Am J Physiol Renal Physiol. 2001;281:F763–8.

    PubMed  CAS  Google Scholar 

  53. Fejes-Toth G, Naray-Fejes-Toth A. Immunohisto­chemical localization of colonic H-K-ATPase to the apical membrane of connecting tubule cells. Am J Physiol Renal Physiol. 2001;281:F318–25.

    PubMed  CAS  Google Scholar 

  54. Sangan P, Kolla SS, Rajendran VM, Kashgarian M, Binder HJ. Colonic H-K-ATPase beta-subunit: identification in apical membranes and regulation by dietary K depletion. Am J Physiol. 1999;276:C350–60.

    PubMed  CAS  Google Scholar 

  55. Verlander JW, Moudy RM, Campbell WG, Cain BD, Wingo CS. Immunohistochemical localization of H-K-ATPase alpha2C subunit in rabbit kidney. Am J Physiol Renal Physiol. 2001;281:F357–65.

    PubMed  CAS  Google Scholar 

  56. Gifford JD, Rome L, Galla JH. H  +  -K  +  -ATPase activity in rat collecting duct segments. Am J Physiol. 1992;262:F692–5.

    PubMed  CAS  Google Scholar 

  57. Lynch IJ, Greenlee MM, Gumz ML, Rudin A, Xia SL, Wingo CS. Heterogeneity of H-K-ATPase-mediated acid secretion along the mouse collecting duct. Am J Physiol Renal Physiol. 2010;298:F408–15.

    PubMed  CAS  Google Scholar 

  58. Wall SM, Hassell KA, Royaux IE, et al. Localization of pendrin in mouse kidney. Am J Physiol Renal Physiol. 2003;284:F229–41.

    PubMed  CAS  Google Scholar 

  59. Verlander JW, Kim YH, Shin W, et al. Dietary Cl(-) restriction upregulates pendrin expression within the apical plasma membrane of type B intercalated cells. Am J Physiol Renal Physiol. 2006;291:F833–9.

    PubMed  CAS  Google Scholar 

  60. Wall SM, Pech V. The interaction of pendrin and the epithelial sodium channel in blood pressure regulation. Curr Opin Nephrol Hypertens. 2008;17:18–24.

    PubMed  CAS  Google Scholar 

  61. Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature. 2002;416:874–8.

    PubMed  CAS  Google Scholar 

  62. Palmer LG, Frindt G. Cl- channels of the distal nephron. Am J Physiol Renal Physiol. 2006;291:F1157–68.

    PubMed  CAS  Google Scholar 

  63. Frische S, Zolotarev AS, Kim YH, et al. AE2 Isoforms in rat kidney: immunohistochemical localization and regulation in response to chronic NH4Cl loading. Am J Physiol Renal Physiol. 2004;286:F1163–70.

    PubMed  CAS  Google Scholar 

  64. Sun X, Petrovic S. Increased acid load and deletion of AE1 increase Slc26a7 expression. Nephron Physiol. 2008;109:29–35.

    Google Scholar 

  65. Praetorius J, Kim YH, Bouzinova EV, et al. NBCn1 Is a basolateral Na  +  –HCO3- cotransporter in rat kidney inner medullary collecting ducts. Am J Physiol Renal Physiol. 2004;286:F903–12.

    PubMed  CAS  Google Scholar 

  66. Kwon TH, Pushkin A, Abuladze N, Nielsen S, Kurtz I. Immunoelectron microscopic localization of NBC3 sodium-bicarbonate cotransporter in rat kidney. Am J Physiol Renal Physiol. 2000;278:F327–36.

    PubMed  CAS  Google Scholar 

  67. Yip KP, Tsuruoka S, Schwartz GJ, Kurtz I. Apical H(+)/base transporters mediating bicarbonate absorption and pH(i) regulation in the OMCD. Am J Physiol Renal Physiol. 2002;283:F1098–104.

    PubMed  Google Scholar 

  68. Damkier HH, Nielsen S, Praetorius J. Molecular expression of SLC4-derived Na  +  -dependent anion transporters in selected human tissues. Am J Physiol Regul Integr Comp Physiol. 2007;293:R2136–46.

    PubMed  CAS  Google Scholar 

  69. Wagner CA, Finberg KE, Stehberger PA, et al. Regulation of the expression of the Cl-/anion exchanger pendrin in mouse kidney by acid-base status. Kidney Int. 2002;62:2109–17.

    PubMed  CAS  Google Scholar 

  70. Verlander JW, Madsen KM, Tisher CC. Effect of acute respiratory acidosis on two populations of intercalated cells in rat cortical collecting duct. Am J Physiol. 1987;253:F1142–56.

    PubMed  CAS  Google Scholar 

  71. Gifford JD, Ware MW, Luke RG, Galla JH. HCO3- transport in rat CCD: rapid adaptation by in vivo but not in vitro alkalosis. Am J Physiol. 1993;264:F435–40.

    PubMed  CAS  Google Scholar 

  72. Sun X, Yang LV, Tiegs BC, et al. Deletion of the pH sensor GPR4 decreases renal acid excretion. J Am Soc Nephrol. 2010;21:1745–55.

    PubMed  CAS  Google Scholar 

  73. Frische S, Kwon TH, Frokiaer J, Madsen KM, Nielsen S. Regulated expression of pendrin in rat kidney in response to chronic NH4Cl or NaHCO3 loading. Am J Physiol Renal Physiol. 2003;284:F584–93.

    PubMed  CAS  Google Scholar 

  74. Quentin F, Chambrey R, Trinh-Trang-Tan MM, et al. The Cl-/HCO3- exchanger pendrin in the rat kidney is regulated in response to chronic alterations in chloride balance. Am J Physiol Renal Physiol. 2004;287:F1179–88.

    PubMed  CAS  Google Scholar 

  75. Galla JH, Gifford JD, Luke RG, Rome L. Adaptations to chloride-depletion alkalosis. Am J Physiol. 1991;261:R771–81.

    PubMed  CAS  Google Scholar 

  76. Stone DK, Seldin DW, Kokko JP, Jacobson HR. Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium-independent effect. J Clin Invest. 1983;72:77–83.

    PubMed  CAS  Google Scholar 

  77. Winter C, Schulz N, Giebisch G, Geibel JP, Wagner CA. Nongenomic stimulation of vacuolar H  +  -ATPases in intercalated renal tubule cells by aldosterone. Proc Natl Acad Sci U S A. 2004;101:2636–41.

    PubMed  CAS  Google Scholar 

  78. Verlander JW, Hassell KA, Royaux IE, et al. Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension. Hypertension. 2003;42:356–62.

    PubMed  CAS  Google Scholar 

  79. Wesson DE. Regulation of kidney acid excretion by endothelins. Kidney Int. 2006;70:2066–73.

    PubMed  CAS  Google Scholar 

  80. Renkema KY, Velic A, Dijkman HB, et al. The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J Am Soc Nephrol. 2009;20:1705–13.

    PubMed  CAS  Google Scholar 

  81. Elkinton JR, Huth EJ, Webster Jr GD, McCance RA. The renal excretion of hydrogen ion in renal tubular acidosis. Am J Med. 1960;36:554–75.

    Google Scholar 

  82. Hamm LL, Simon EE. Roles and mechanisms of urinary buffer excretion. Am J Physiol. 1987;253:F595–605.

    PubMed  CAS  Google Scholar 

  83. Nowik M, Picard N, Stange G, et al. Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption. Pflugers Arch. 2008;457:539–49.

    PubMed  CAS  Google Scholar 

  84. Villa-Bellosta R, Sorribas V. Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Pflugers Arch. 2009;459:499–508.

    PubMed  Google Scholar 

  85. Stauber A, Radanovic T, Stange G, Murer H, Wagner CA, Biber J. Regulation of intestinal phosphate transport II. Metabolic acidosis stimulates Na  +  -dependent phosphate absorption and expression of the Na  +  -Pi cotransporter NaPi-IIb in small intestine. Am J Physiol Gastrointest Liver Physiol. 2005;288:G501–6.

    PubMed  CAS  Google Scholar 

  86. Lemann Jr J, Bushinsky DA, Hamm LL. Bone buffering of acid and base in humans. Am J Physiol Renal Physiol. 2003;285:F811–32.

    PubMed  CAS  Google Scholar 

  87. Unwin RJ, Capasso G, Shirley DG. An overview of divalent cation and citrate handling by the kidney. Nephron Physiol. 2004;98:15–20.

    Google Scholar 

  88. Aruga S, Wehrli S, Kaissling B, et al. Chronic metabolic acidosis increases NaDC-1 mRNA and protein abundance in rat kidney. Kidney Int. 2000;58:206–15.

    PubMed  CAS  Google Scholar 

  89. Burckhardt BC, Burckhardt G. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol. 2003;146:95–158.

    PubMed  CAS  Google Scholar 

  90. Lemann Jr J, Lennon EJ, Goodman AD, Litzow JR, Relman AS. The net balance of acid in subjects given large loads of acid or alkali. J Clin Invest. 1965;44:507–17.

    PubMed  CAS  Google Scholar 

  91. Hood VL. pH regulation of endogenous acid production in subjects with chronic ketoacidosis. Am J Physiol Renal Physiol. 1985;249:F220–6.

    CAS  Google Scholar 

  92. Cheema-Dhadli S, Lin SH, Halperin ML. Mechanisms used to dispose of progressively increasing alkali load in rats. Am J Physiol Renal Physiol. 2002;282:F1049–55.

    PubMed  CAS  Google Scholar 

  93. Weiner ID, Verlander JW. Role of NH3 and NH4+ transporters in renal acid-base transport. Am J Physiol Renal Physiol. 2011;300:F11–23.

    PubMed  CAS  Google Scholar 

  94. Weiner ID, Hamm LL. Molecular mechanisms of renal ammonia transport. Annu Rev Physiol. 2007;69:317–40.

    PubMed  CAS  Google Scholar 

  95. Taylor L, Curthoys NP. Glutamine metabolism: role in acid-base balance. Biochem Mol Biol Educ. 2004;32:291–304.

    PubMed  CAS  Google Scholar 

  96. Verrey F, Singer D, Ramadan T, Vuille-dit-Bille R, Mariotta L, Camargo S. Kidney amino acid transport. Pflugers Arch. 2009;458:53–60.

    PubMed  CAS  Google Scholar 

  97. Tannen RL, Sahai A. Biochemical pathways and modulators of renal ammoniagenesis. Miner Electrolyte Metab. 1990;16:249–58.

    PubMed  CAS  Google Scholar 

  98. Alleyne GA, Barnswell J, McFarlane-Anderson N, Alexander JE. Renal ammoniagenic factor in the plasma of rats with acute metabolic acidosis. Am J Physiol. 1981;241:F112–6.

    PubMed  CAS  Google Scholar 

  99. Wall SM. Ammonium transport and the role of the Na, K-ATPase. Miner Electrolyte Metab. 1996;22:311–7.

    PubMed  CAS  Google Scholar 

  100. Curthoys NP, Gstraunthaler G. Mechanism of increased renal gene expression during metabolic acidosis. Am J Physiol Renal Physiol. 2001;281:F381–90.

    PubMed  CAS  Google Scholar 

  101. Musa-Aziz R, Chen LM, Pelletier MF, Boron WF. Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci U S A. 2009;106:5406–11.

    PubMed  CAS  Google Scholar 

  102. Weiner ID, Verlander JW. Molecular physiology of the Rh ammonia transport proteins. Curr Opin Nephrol Hypertens. 2010;19:471–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors dedicate this chapter to the many talented investigators with whom we have been fortunate to work, the superb mentors who have supported, encouraged and, in many cases, enabled our scientific endeavors, and to our wonderful spouses and families who have supported all aspects of our lives. The preparation of this chapter was supported in part by funds from NIH R01-DK-45788, RO1-DK-49750, RO1-DK-82680 and Department of Veterans Affairs 1I01BX000818.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. David Weiner M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weiner, I.D., Verlander, J.W., Wingo, C.S. (2013). Renal Acidification Mechanisms. In: Mount, D., Sayegh, M., Singh, A. (eds) Core Concepts in the Disorders of Fluid, Electrolytes and Acid-Base Balance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3770-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3770-3_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3769-7

  • Online ISBN: 978-1-4614-3770-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics