Skip to main content
  • 3460 Accesses

Abstract

The lungs serve to defend pH by altering alveolar ventilation which serves to control the pCO2 of body fluids. Respiratory acidosis develops as a result of ineffective alveolar ventilation. Respiratory alkalosis results from hypocapnia and is defined by a PaCO2 of less than 35 mmHg in the setting of alkalemia. An increase in alveolar ventilation relative to CO2 production gives rise to respiratory alkalosis. The clinical disorders which lead to ineffective ventilation or excess ventilation are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger AJ, Mitchell RA, Severinghaus JW. Regulation of respiration (first of three parts). N Engl J Med. 1977;297:92–7.

    Article  PubMed  CAS  Google Scholar 

  2. Fencl V, Miller TB, Pappenheimer JR. Studies on the respiratory response to disturbances of acid–base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. Am J Physiol. 1966;210:459–72.

    PubMed  CAS  Google Scholar 

  3. Weinberger SE, Schwartzstein RM, Weiss JW. Hypercapnia. N Engl J Med. 1989;321:1223–31.

    Article  PubMed  CAS  Google Scholar 

  4. Brackett Jr NC, Wingo CF, Muren O, Solano JT. Acid–base response to chronic hypercapnia in man. N Engl J Med. 1969;280:124–30.

    Article  PubMed  Google Scholar 

  5. Cogan MG. Chronic hypercapnia stimulates proximal bicarbonate reabsorption in the rat. J Clin Invest. 1984;74:1942–7.

    Article  PubMed  CAS  Google Scholar 

  6. Laski ME, Kurtzman NA. Collecting tubule adaptation to respiratory acidosis induced in vivo. Am J Physiol. 1990;258:F15–20.

    PubMed  CAS  Google Scholar 

  7. Madias NE, Wolf CJ, Cohen JJ. Regulation of acid–base equilibrium in chronic hypercapnia. Kidney Int. 1985;27:538–43.

    Article  PubMed  CAS  Google Scholar 

  8. Covelli HD, Black JW, Olsen MS, Beekman JF. Respiratory failure precipitated by high carbohydrate loads. Ann Intern Med. 1981;95:579–81.

    PubMed  CAS  Google Scholar 

  9. Kilburn KH. Neurologic manifestations of respiratory failure. Arch Intern Med. 1965;116:409–15.

    Article  PubMed  CAS  Google Scholar 

  10. McFadden Jr ER, Gilbert IA. Asthma. N Engl J Med. 1992;327:1928–37.

    Article  PubMed  Google Scholar 

  11. Anthonisen NR. Long-term oxygen therapy. Ann Intern Med. 1983;99:519–27.

    PubMed  CAS  Google Scholar 

  12. Palevsky HI, Fishman AP. Chronic cor pulmonale. Etiology and management. JAMA. 1990;263:2347–53.

    Article  PubMed  CAS  Google Scholar 

  13. Rotheram Jr EB, Safar P, Robin E. CNS disorder ­during mechanical ventilation in chronic pulmonary disease. JAMA. 1964;189:993–6.

    Article  PubMed  Google Scholar 

  14. Kilburn KH. Shock, seizures, and coma with alkalosis during mechanical ventilation. Ann Intern Med. 1966;65:977–84.

    PubMed  CAS  Google Scholar 

  15. Mazzara JT, Ayers SM, Grace WJ. Extreme hypocapnia in the critically ill patient. Am J Med. 1974;56:450–6.

    Article  PubMed  CAS  Google Scholar 

  16. Mulhausen R, Eichenholz A, Blumentals A. Acid–base disturbances in patients with cirrhosis of the liver. Medicine. 1967;46:185–9.

    Article  PubMed  CAS  Google Scholar 

  17. Gotch FA, Sargent JA, Keen ML. Hydrogen ion balance in dialysis therapy. Artif Organs. 1982;6:388–95.

    PubMed  CAS  Google Scholar 

  18. Gennari FJ. Acid–base balance in dialysis patients. Kidney Int. 1985;28:678–88.

    Article  PubMed  CAS  Google Scholar 

  19. Laffey JG, Kavanagh BP. Hypocapnia. N Engl J Med. 2002;347:43–53.

    Article  PubMed  CAS  Google Scholar 

  20. Nevin M, Colchester AC, Adams S, Pepper JR. Evidence for involvement of hypocapnia and hypoperfusion in aetiology of neurological deficit after cardiopulmonary bypass. Lancet. 1987;2:1493–5.

    Article  PubMed  CAS  Google Scholar 

  21. Ayres SM, Grace WJ. Inappropriate ventilation and hypoxemia as causes of cardiac arrhythmias. The control of arrhythmias without antiarrhythmic drugs. Am J Med. 1969;46:495–505.

    Article  PubMed  CAS  Google Scholar 

  22. Lenfant C, Sullivan K. Adaptation to high altitude. N Engl J Med. 1971;284:1298–309.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biff F. Palmer M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Palmer, B.F. (2013). Respiratory Acid–Base Disorders. In: Mount, D., Sayegh, M., Singh, A. (eds) Core Concepts in the Disorders of Fluid, Electrolytes and Acid-Base Balance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3770-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3770-3_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3769-7

  • Online ISBN: 978-1-4614-3770-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics