Skip to main content

Abstract

Water is the most abundant constituent in the body. Vasopressin secretion, water ingestion, and the renal concentrating mechanism collaborate to maintain human body fluid osmolality nearly constant. Abnormalities in these processes cause hyponatremia, hypernatremia, and polyuria. The primary hormonal control of renal water excretion is by vasopressin (also named antidiuretic hormone). Thirst and vasopressin release from the posterior pituitary are under the control of osmoreceptive neurons in the central nervous system. The kidney maintains blood plasma osmolality and sodium concentration nearly constant by means of mechanisms that independently regulate water and sodium excretion. The renal medulla produces concentrated urine through the generation of an osmotic gradient extending from the cortico-medullary boundary to the inner medullary tip. This gradient is generated in the outer medulla by the countercurrent multiplication of a comparatively small transepithelial difference in osmotic pressure. This small difference, called a single effect, arises from active NaCl reabsorption from thick ascending limbs, which dilutes ascending limb flow relative to flow in vessels and other tubules. In the inner medulla, the gradient may also be generated by the countercurrent multiplication of a single effect, but the single effect has not been definitively identified. Continued experimental investigation and incorporation of the resulting information into mathematic simulations may help to more fully elucidate the inner medullary urine concentrating mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sands JM, Layton HE. The physiology of urinary concentration: an update. Semin Nephrol. 2009;29(3): 178–95.

    PubMed  CAS  Google Scholar 

  2. Sands JM, Layton HE. The urine concentrating mechanism and urea transporters. In: Alpern RJ, Hebert SC, editors. The Kidney: Physiology and Pathophysiology. 4th ed. San Diego: Academic Press; 2008. p. 1143–78.

    Google Scholar 

  3. Robertson GL, Aycinena P, Zerbe RL. Neurogenic disorders of osmoregulation. Am J Med. 1982;72(2):339–53.

    PubMed  CAS  Google Scholar 

  4. Uretsky BF, Verbalis JG, Generalovich T, Valdes A, Reddy PS. Plasma vasopressin response to osmotic and hemodynamic stimuli in heart failure. Am J Physiol. 1985;248(3 Pt 2):H396–402.

    PubMed  CAS  Google Scholar 

  5. Verbalis JG, Berl T. Disorders of water balance. In: Brenner BM, editor. The Kidney. 8th ed. Philadelphia, PA: Saunders; 2008. p. 459–549.

    Google Scholar 

  6. Mount DB. The brain in hyponatremia: both culprit and victim. Semin Nephrol. 2009;29(3):196–215.

    PubMed  CAS  Google Scholar 

  7. Davison JM, Gilmore EA, Durr J, Robertson GL, Lindheimer MD. Altered osmotic thresholds for vasopressin secretion and thirst in human pregnancy. Am J Physiol. 1984;246(1 Pt 2):F105–9.

    PubMed  CAS  Google Scholar 

  8. Sladek CD, Somponpun SJ. Estrogen receptors: their roles in regulation of vasopressin release for maintenance of fluid and electrolyte homeostasis. Front Neuroendocrinol. 2008;29(1):114–27.

    PubMed  CAS  Google Scholar 

  9. Pak TR, Chung WC, Hinds LR, Handa RJ. Estrogen receptor-beta mediates dihydrotestosterone-induced stimulation of the arginine vasopressin promoter in neuronal cells. Endocrinology. 2007;148(7): 3371–82.

    PubMed  CAS  Google Scholar 

  10. Somponpun SJ, Sladek CD. Depletion of oestrogen receptor-beta expression in magnocellular arginine vasopressin neurones by hypovolaemia and dehydration. J Neuroendocrinol. 2004;16(6):544–9.

    PubMed  CAS  Google Scholar 

  11. McKenna K, Thompson C. Osmoregulation in clinical disorders of thirst appreciation. Clin Endocrinol (Oxf). 1998;49(2):139–52.

    CAS  Google Scholar 

  12. Bourque CW. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci. 2008;9(7):519–31.

    PubMed  CAS  Google Scholar 

  13. Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol Rev. 1998;78(3):583–686.

    PubMed  CAS  Google Scholar 

  14. Sakai K, Agassandian K, Morimoto S, Sinnayah P, Cassell MD, Davisson RL, et al. Local production of angiotensin II in the subfornical organ causes elevated drinking. J Clin Invest. 2007;117(4):1088–95.

    PubMed  CAS  Google Scholar 

  15. Lazartigues E, Sinnayah P, Augoyard G, Gharib C, Johnson AK, Davisson RL. Enhanced water and salt intake in transgenic mice with brain-restricted overexpression of angiotensin (AT1) receptors. Am J Physiol Regul Integr Comp Physiol. 2008;295(5): R1539–45.

    PubMed  CAS  Google Scholar 

  16. McKinley MJ, Walker LL, Alexiou T, Allen AM, Campbell DJ, Di NR, et al. Osmoregulatory fluid intake but not hypovolemic thirst is intact in mice lacking angiotensin. Am J Physiol Regul Integr Comp Physiol. 2008;294(5):R1533–43.

    PubMed  CAS  Google Scholar 

  17. Phillips PA, Rolls BJ, Ledingham JG, Morton JJ, Forsling ML. Angiotensin II-induced thirst and vasopressin release in man. Clin Sci (Lond). 1985; 68(6):669–74.

    CAS  Google Scholar 

  18. Cadnapaphornchai MA, Rogachev B, Summer SN, Chen YC, Gera L, Stewart JM, et al. Evidence for bradykinin as a stimulator of thirst. Am J Physiol Renal Physiol. 2004;286(5):F875–80.

    PubMed  CAS  Google Scholar 

  19. Smith D, Moore K, Tormey W, Baylis PH, Thompson CJ. Downward resetting of the osmotic threshold for thirst in patients with SIADH. Am J Physiol Endocrinol Metab. 2004;287(5):E1019–23.

    PubMed  CAS  Google Scholar 

  20. Verney EB. The antidiuretic hormone and the factors which determine its release. Proc R Soc Lond B Biol Sci. 1947;135(878):25–106.

    PubMed  CAS  Google Scholar 

  21. McKinley MJ, Denton DA, Oldfield BJ, De Oliveira LB, Mathai ML. Water intake and the neural correlates of the consciousness of thirst. Semin Nephrol. 2006;26(3):249–57.

    PubMed  Google Scholar 

  22. Bourque CW, Ciura S, Trudel E, Stachniak TJ, Sharif-Naeini R. Neurophysiological characterization of mammalian osmosensitive neurones. Exp Physiol. 2007;92(3):499–505.

    PubMed  CAS  Google Scholar 

  23. Sewards TV, Sewards MA. The awareness of thirst: proposed neural correlates. Conscious Cogn. 2000;9(4):463–87.

    PubMed  CAS  Google Scholar 

  24. Oliet SH, Bourque CW. Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature. 1993;364(6435):341–3.

    PubMed  CAS  Google Scholar 

  25. McKinley MJ, Cairns MJ, Denton DA, Egan G, Mathai ML, Uschakov A, et al. Physiological and pathophysiological influences on thirst. Physiol Behav. 2004;81(5):795–803.

    PubMed  CAS  Google Scholar 

  26. McKinley MJ, Mathai ML, McAllen RM, McClear RC, Miselis RR, Pennington GL, et al. Vasopressin secretion: osmotic and hormonal regulation by the lamina terminalis. J Neuroendocrinol. 2004;16(4): 340–7.

    PubMed  CAS  Google Scholar 

  27. McKinley MJ, Mathai ML, Pennington G, Rundgren M, Vivas L. Effect of individual or combined ablation of the nuclear groups of the lamina terminalis on water drinking in sheep. Am J Physiol Regul Integr Comp Physiol. 1999;276(3):R673–83.

    CAS  Google Scholar 

  28. Egan G, Silk T, Zamarripa F, Williams J, Federico P, Cunnington R, et al. Neural correlates of the emergence of consciousness of thirst. Proc Natl Acad Sci U S A. 2003;100(25):15241–6.

    PubMed  CAS  Google Scholar 

  29. Baylis PH, Thompson CJ. Osmoregulation of vasopressin secretion and thirst in health and disease. Clin Endocrinol (Oxf). 1988;29(5):549–76.

    CAS  Google Scholar 

  30. Shi P, Martinez MA, Calderon AS, Chen Q, Cunningham JT, Toney GM. Intra-carotid hyperosmotic stimulation increases Fos staining in forebrain organum vasculosum laminae terminalis neurones that project to the hypothalamic paraventricular nucleus. J Physiol. 2008;586(Pt 21):5231–45.

    PubMed  CAS  Google Scholar 

  31. Zhang Z, Bourque CW. Osmometry in osmosensory neurons. Nat Neurosci. 2003;6:1021–2.

    PubMed  CAS  Google Scholar 

  32. Zhang Z, Bourque CW. Calcium permeability and flux through osmosensory transduction channels of isolated rat supraoptic nucleus neurons. Eur J Neurosci. 2006;23(6):1491–500.

    PubMed  Google Scholar 

  33. Colbert HA, Smith TL, Bargmann CI. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci. 1997;17(21):8259–69.

    PubMed  CAS  Google Scholar 

  34. Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 2000;103(3): 525–35.

    PubMed  CAS  Google Scholar 

  35. Mizuno A, Matsumoto N, Imai M, Suzuki M. Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol. 2003;285(1):C96–C101.

    PubMed  CAS  Google Scholar 

  36. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol. 2000;2(10):695–702.

    PubMed  CAS  Google Scholar 

  37. Oliet SH, Bourque CW. Gadolinium uncouples mechanical detection and osmoreceptor potential in supraoptic neurons. Neuron. 1996;16(1):175–81.

    PubMed  CAS  Google Scholar 

  38. Qiu DL, Shirasaka T, Chu CP, Watanabe S, Yu NS, Katoh T, et al. Effect of hypertonic saline on rat hypothalamic paraventricular nucleus magnocellular neurons in vitro. Neurosci Lett. 2004;355(1–2): 117–20.

    PubMed  CAS  Google Scholar 

  39. Liedtke W, Friedman JM. Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci U S A. 2003;100(23):13698–703.

    PubMed  CAS  Google Scholar 

  40. Tsushima H, Mori M. Antidipsogenic effects of a TRPV4 agonist, 4alpha-phorbol 12,13-didecanoate, injected into the cerebroventricle. Am J Physiol Regul Integr Comp Physiol. 2006;290(6):R1736–41.

    PubMed  CAS  Google Scholar 

  41. Ciura S, Bourque CW. Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. J Neurosci. 2006;26(35):9069–75.

    PubMed  CAS  Google Scholar 

  42. Sharif NR, Witty MF, Seguela P, Bourque CW. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci. 2006;9(1): 93–8.

    Google Scholar 

  43. Suzuki M, Sato J, Kutsuwada K, Ooki G, Imai M. Cloning of a stretch-inhibitable nonselective cation channel. J Biol Chem. 1999;274(10):6330–5.

    PubMed  CAS  Google Scholar 

  44. Taylor AC, McCarthy JJ, Stocker SD. Mice lacking the transient receptor vanilloid potential 1 channel display normal thirst responses and central Fos activation to hypernatremia. Am J Physiol Regul Integr Comp Physiol. 2008;294(4):R1285–93.

    PubMed  CAS  Google Scholar 

  45. Wainwright A, Rutter AR, Seabrook GR, Reilly K, Oliver KR. Discrete expression of TRPV2 within the hypothalamo-neurohypophysial system: Implications for regulatory activity within the hypothalamic-pituitary-adrenal axis. J Comp Neurol. 2004;474(1): 24–42.

    PubMed  Google Scholar 

  46. Bourque CW, Voisin DL, Chakfe Y. Stretch-inactivated cation channels: cellular targets for modulation of osmosensitivity in supraoptic neurons. Prog Brain Res. 2002;139:85–94.

    PubMed  CAS  Google Scholar 

  47. Voisin DL, Chakfe Y, Bourque CW. Coincident detection of CSF Na+ and osmotic pressure in osmoregulatory neurons of the supraoptic nucleus. Neuron. 1999;24(2):453–60.

    PubMed  CAS  Google Scholar 

  48. McKinley MJ, Denton DA, Weisinger RS. Sensors for antidiuresis and thirst—osmoreceptors or CSF sodium detectors? Brain Res. 1978;141(1):89–103.

    PubMed  CAS  Google Scholar 

  49. Chakfe Y, Bourque CW. Excitatory peptides and osmotic pressure modulate mechanosensitive cation channels in concert. Nat Neurosci. 2000;3(6):572–9.

    PubMed  CAS  Google Scholar 

  50. Zhang Z, Bourque CW. Amplification of transducer gain by angiotensin II-mediated enhancement of cortical actin density in osmosensory neurons. J Neurosci. 2008;28(38):9536–44.

    PubMed  CAS  Google Scholar 

  51. Mikkelsen JD, Hay-Schmidt A, Kiss A. Serotonergic stimulation of the rat hypothalamo-pituitary-adrenal axis: interaction between 5-HT1A and 5-HT2A receptors. Ann N Y Acad Sci. 2004;1018:65–70.

    PubMed  CAS  Google Scholar 

  52. Ho SS, Chow BK, Yung WH. Serotonin increases the excitability of the hypothalamic paraventricular nucleus magnocellular neurons. Eur J Neurosci. 2007;25(10):2991–3000.

    PubMed  Google Scholar 

  53. Stephenson CP, Hunt GE, Topple AN, McGregor IS. The distribution of 3,4-methylenedioxymethamphetamine “Ecstasy”-induced c-fos expression in rat brain. Neuroscience. 1999;92(3):1011–23.

    PubMed  CAS  Google Scholar 

  54. Fallon JK, Shah D, Kicman AT, Hutt AJ, Henry JA, Cowan DA, et al. Action of MDMA (ecstasy) and its metabolites on arginine vasopressin release. Ann N Y Acad Sci. 2002;965:399–409.

    PubMed  CAS  Google Scholar 

  55. Campbell GA, Rosner MH. The agony of ecstasy: MDMA (3,4-methylenedioxymethamphetamine) and the kidney. Clin J Am Soc Nephrol. 2008;3(6): 1852–60.

    PubMed  CAS  Google Scholar 

  56. Knepper MA, Stephenson JL. Urinary concentrating and diluting processes. In: Andreoli TE, Hoffman JF, Fanestil DD, Schultz SG, editors. Physiology of membrane disorders. 2nd ed. New York: Plenum; 1986. p. 713–26.

    Google Scholar 

  57. Hai MA, Thomas S. The time-course of changes in renal tissue composition during lysine vasopressin infusion in the rat. Pfleugers Arch. 1969;310:297–319.

    CAS  Google Scholar 

  58. Knepper MA. Measurement of osmolality in kidney slices using vapor pressure osmometry. Kidney Int. 1982;21:653–5.

    PubMed  CAS  Google Scholar 

  59. Pannabecker TL, Dantzler WH, Layton HE, Layton AT. Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla. Am J Physiol Renal Physiol. 2008;295(5):F1271–85.

    PubMed  CAS  Google Scholar 

  60. Kriz W. Der architektonische und funktionelle Aufbau der Rattenniere. Z Zellforsch. 1967;82: 495–535.

    PubMed  CAS  Google Scholar 

  61. Kokko JP, Rector FC. Countercurrent multiplication system without active transport in inner medulla. Kidney Int. 1972;2:214–23.

    PubMed  CAS  Google Scholar 

  62. Stephenson JL. Concentration of urine in a central core model of the renal counterflow system. Kidney Int. 1972;2:85–94.

    PubMed  CAS  Google Scholar 

  63. Zimmerhackl BL, Robertson CR, Jamison RL. The medullary microcirculation. Kidney Int. 1987;31(2): 641–7.

    PubMed  CAS  Google Scholar 

  64. Pallone TL, Turner MR, Edwards A, Jamison RL. Countercurrent exchange in the renal medulla. Am J Physiol Regul Integr Comp Physiol. 2003;284(5): R1153–75.

    PubMed  CAS  Google Scholar 

  65. Kuhn W, Ryffel K. Herstellung konzentrierrter Lösungen aus verdünnten durch blosse Membranwirkung: Ein Modellversuch zur Funktion der Niere. Hoppe Seylers Z Physiol Chem. 1942;276:145–78.

    CAS  Google Scholar 

  66. Gottschalk CW, Mylle M. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am J Physiol. 1959;196:927–36.

    PubMed  CAS  Google Scholar 

  67. Rocha AS, Kokko JP. Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. J Clin Invest. 1973;52:612–23.

    PubMed  CAS  Google Scholar 

  68. Ullrich KJ, Schmidt-Nielsen B, O’Dell R, Pehling G, Gottschalk CW, Lassiter WE, et al. Micropuncture study of composition of proximal and distal tubular fluid in rat kidney. Am J Physiol. 1963;204:527–31.

    PubMed  CAS  Google Scholar 

  69. Jamison RL, Kriz W. Urinary concentrating mechanism. Structure and function. New York: Oxford University Press; 1982.

    Google Scholar 

  70. Chou C-L, Knepper MA, Layton HE. Urinary concentrating mechanism: the role of the inner medulla. Semin Nephrol. 1993;13(2):168–81.

    PubMed  CAS  Google Scholar 

  71. Fenton RA, Chou C-L, Stewart GS, Smith CP, Knepper MA. Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct. Proc Natl Acad Sci U S A. 2004;101(19):7469–74.

    PubMed  CAS  Google Scholar 

  72. Layton HE, Knepper MA, Chou C-L. Permeability criteria for effective function of passive countercurrent multiplier. Am J Physiol. 1996;270(1):F9–F20.

    PubMed  CAS  Google Scholar 

  73. Moore LC, Marsh DJ. How descending limb of Henle’s loop permeability affects hypertonic urine formation. Am J Physiol. 1980;239:F57–71.

    PubMed  CAS  Google Scholar 

  74. Wexler AS, Kalaba RE, Marsh DJ. Passive, one-dimensional countercurrent models do not simulate hypertonic urine formation. Am J Physiol. 1987;253:F1020–30.

    PubMed  CAS  Google Scholar 

  75. Wexler AS, Kalaba RE, Marsh DJ. Three-dimensional anatomy and renal concentrating mechanism. I. Modelling results. Am J Physiol. 1991;260: F368–83.

    PubMed  CAS  Google Scholar 

  76. Knepper MA, Chou C-L, Layton HE. How is urine concentrated by the renal inner medulla? Contrib Nephrol. 1993;102:144–60.

    PubMed  CAS  Google Scholar 

  77. Jen JF, Stephenson JL. Externally driven countercurrent multiplication in a mathematical model of the urinary concentrating mechanism of the renal inner medulla. Bull Math Biol. 1994;56(3):491–514.

    PubMed  CAS  Google Scholar 

  78. Chou C-L, Knepper MA. In vitro perfusion of chinchilla thin limb segments: urea and NaCl permeabilities. Am J Physiol Renal Physiol. 1993;264: F337–43.

    CAS  Google Scholar 

  79. Thomas SR. Inner medullary lactate production and accumulation: a vasa recta model. Am J Physiol Renal Physiol. 2000;279:F468–81.

    PubMed  CAS  Google Scholar 

  80. Hervy S, Thomas SR. Inner medullary lactate production and urine-concentrating mechanism: a flat medullary model. Am J Physiol Renal Physiol. 2003;284(1):F65–81.

    PubMed  CAS  Google Scholar 

  81. Knepper MA, Saidel GM, Hascall VC, Dwyer T. Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer. Am J Physiol Renal Physiol. 2003;284(3): F433–46.

    PubMed  CAS  Google Scholar 

  82. Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Two modes for concentrating urine in rat inner medulla. Am J Physiol Renal Physiol. 2004;287(4): F816–39.

    PubMed  CAS  Google Scholar 

  83. Hargitay B, Kuhn W. Das Multiplikationsprinzip als Grundlage der Harnkonzentrierung in der Niere. Z Elektrochem. 1951;55:539–58.

    CAS  Google Scholar 

  84. Vehaskari VM, Hering-Smith KS, Moskowitz DW, Weiner ID, Hamm LL. Effect of epidermal growth factor on sodium transport in the cortical collecting tubule. Am J Physiol. 1989;256:F803–9.

    PubMed  CAS  Google Scholar 

  85. Layton AT, Layton HE. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results. Am J Physiol Renal Physiol. 2005;289(6): F1346–66.

    PubMed  CAS  Google Scholar 

  86. Layton AT, Layton HE. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity. Am J Physiol Renal Physiol. 2005;289(6):F1367–81.

    PubMed  CAS  Google Scholar 

  87. de Rouffignac C. The urinary concentrating mechanism. In: Kinne RKH, editor. Urinary concentrating mechanisms. Comparative physiology. Basel: Karger; 1990. p. 31–102.

    Google Scholar 

  88. Macri P, Breton S, Marsolais M, Lapointe JY, Laprade R. Hypertonicity decreases basolateral K+ and Cl− conductances in rabbit proximal convoluted tubule. J Membr Biol. 1997;155(3):229–37.

    PubMed  CAS  Google Scholar 

  89. Morgan T, Berliner RW. Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea, and sodium. Am J Physiol. 1968;215:108–15.

    PubMed  CAS  Google Scholar 

  90. Imai M, Kokko JP. Sodium, chloride, urea, and water transport in the thin ascending limb of Henle. J Clin Invest. 1974;53:393–402.

    PubMed  CAS  Google Scholar 

  91. Kokko JP. Sodium chloride and water transport in the descending limb of Henle. J Clin Invest. 1970;49:1838–46.

    PubMed  CAS  Google Scholar 

  92. Kokko JP. Urea transport in the proximal tubule and the descending limb of Henle. J Clin Invest. 1972;51:1999–2008.

    PubMed  CAS  Google Scholar 

  93. Gamble JL, McKhann CF, Butler AM, Tuthill E. An economy of water in renal function referable to urea. Am J Physiol. 1934;109:139–54.

    CAS  Google Scholar 

  94. Niesel W, Röskenbleck H. Konzentrierung von Lösungen unterschiedlicher Zusammensetzung durch alleinige Gegenstromdiffusion und Geggenstromosmose als möglicher Mechanismus der Harnkonzentrierung. Pflfiegers Arch. 1965;283: 230–41.

    CAS  Google Scholar 

  95. Layton HE, Davies JM. Distributed solute and water reabsorption in a central core model of the renal medulla. Math Biosci. 1993;116:169–96.

    PubMed  CAS  Google Scholar 

  96. Wang X, Wexler AS, Marsh DJ. The effect of solution non-ideality on membrane transport in three-dimensional models of the renal concentrating mechanism. Bull Math Biol. 1994;56(3):515–46.

    PubMed  CAS  Google Scholar 

  97. Thomas SR. Cycles and separations in a model of the renal medulla. Am J Physiol Renal Physiol. 1998;275(5):F671–90.

    CAS  Google Scholar 

  98. Stephenson JL, Zhang Y, Eftekhari A, Tewarson RP. Electrolyte transport in a central core model of the renal medulla. Am J Physiol. 1989;253:F982–97.

    Google Scholar 

  99. Stephenson JL, Zhang Y, Tewarson RP. Electrolyte, urea, and water transport in a two-nephron central core model of the renal medulla. Am J Physiol. 1989;257:F388–413.

    Google Scholar 

  100. Thomas SR, Wexler AS. Inner medullary external osmotic driving force in a 3D model of the renal concentrating mechanism. Am J Physiol. 1995;269: F159–71.

    PubMed  CAS  Google Scholar 

  101. Pannabecker TL, Dantzler WH. Three-dimensional lateral and vertical relationships of inner medullary loops of Henle and collecting ducts. Am J Physiol Renal Physiol. 2004;287(4):F767–74.

    PubMed  CAS  Google Scholar 

  102. Pannabecker TL, Abbott DE, Dantzler WH. Three-dimensional functional reconstruction of inner medullary thin limbs of Henle’s loop. Am J Physiol Renal Physiol. 2004;286(1):F38–45.

    PubMed  CAS  Google Scholar 

  103. Schmidt-Nielsen B. The renal concentrating mechanism in insects and mammals: a new hypothesis involving hydrostatic pressures. Am J Physiol. 1995;268:R1087–100.

    PubMed  CAS  Google Scholar 

  104. Tomita K, Pisano JJ, Knepper MA. Control of sodium and potassium transport in the cortical collecting duct of the rat. Effects of bradykinin, vasopressin, and deoxycorticosterone. J Clin Invest. 1985;76:132–6.

    PubMed  CAS  Google Scholar 

  105. Sands JM, Knepper MA. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J Clin Invest. 1987;79: 138–47.

    PubMed  CAS  Google Scholar 

  106. Sands JM, Nonoguchi H, Knepper MA. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am J Physiol. 1987;253:F823–32.

    PubMed  CAS  Google Scholar 

  107. Hoffert JD, Fenton RA, Moeller HB, Simons B, Tchapyjnikov D, McDill BW, et al. Vasopressin-stimulated Increase in Phosphorylation at Ser269 Potentiates Plasma Membrane Retention of Aquaporin-2. J Biol Chem. 2008;283(36): 24617–27.

    PubMed  CAS  Google Scholar 

  108. Hoffert JD, Pisitkun T, Wang GH, Shen RF, Knepper MA. Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am J Physiol Renal Physiol. 2007;292(2):F691–700.

    PubMed  CAS  Google Scholar 

  109. Hoffert JD, Pisitkun T, Wang G, Shen R-F, Knepper MA. Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci U S A. 2006;103(18):7159–64.

    PubMed  CAS  Google Scholar 

  110. Fenton RA, Moeller HB, Hoffert JD, Yu MJ, Nielsen S, Knepper MA. Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. PNAS. 2008;105(8):3134–9.

    PubMed  CAS  Google Scholar 

  111. Nielsen S, Frokiaer J, Marples D, Kwon ED, Agre P, Knepper M. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82:205–44.

    PubMed  CAS  Google Scholar 

  112. Wade JB, Stetson DL, Lewis SA. ADH action: evidence for a membrane shuttle mechanism. Ann N Y Acad Sci. 1981;372:106–17.

    PubMed  CAS  Google Scholar 

  113. Jamison RL, Buerkert J, Lacy FB. A micropuncture study of collecting tubule function in rats with hereditary diabetes insipidus. J Clin Invest. 1971;50: 2444–52.

    PubMed  CAS  Google Scholar 

  114. Fenton RA, Knepper MA. Urea and renal function in the 21st century: insights from knockout mice. J Am Soc Nephrol. 2007;18(3):679–88.

    PubMed  CAS  Google Scholar 

  115. Fröhlich O, Klein JD, Smith PM, Sands JM, Gunn RB. Urea transport in MDCK cells that are stably transfected with UT-A1. Am J Physiol Cell Physiol. 2004;286(6):C1264–70.

    PubMed  Google Scholar 

  116. Klein JD, Blount MA, Fröhlich O, Denson C, Tan X, Sim J, et al. Phosphorylation of UT-A1 on serine 486 correlates with membrane accumulation and urea transport activity in both rat IMCDs and cultured cells. Am J Physiol Renal Physiol. 2010;298(4):F935–40.

    PubMed  CAS  Google Scholar 

  117. Shayakul C, Steel A, Hediger MA. Molecular cloning and characterization of the vasopressin-regulated urea transporter of rat kidney collecting ducts. J Clin Invest. 1996;98(11):2580–7.

    PubMed  CAS  Google Scholar 

  118. Promeneur D, Rousselet G, Bankir L, Bailly P, Cartron JP, Ripoche P, et al. Evidence for distinct vascular and tubular urea transporters in the rat kidney. J Am Soc Nephrol. 1996;7(6):852–60.

    PubMed  CAS  Google Scholar 

  119. Fenton RA, Stewart GS, Carpenter B, Howorth A, Potter EA, Cooper GJ, et al. Characterization of the mouse urea transporters UT-A1 and UT-A2. Am J Physiol Renal Physiol. 2002;283(4):F817–25.

    PubMed  CAS  Google Scholar 

  120. Chen G, Fröhlich O, Yang Y, Klein JD, Sands JM. Loss of N-linked glycosylation reduces urea transporter UT-A1 response to vasopressin. J Biol Chem. 2006;281(37):27436–42.

    PubMed  CAS  Google Scholar 

  121. Mistry AC, Mallick R, Fröhlich O, Klein JD, Rehm A, Chen G, et al. The UT-A1 urea transporter interacts with snapin, a snare-associated protein. J Biol Chem. 2007;282(41):30097–106.

    PubMed  CAS  Google Scholar 

  122. Terris JM, Knepper MA, Wade JB. UT-A3: localization and characterization of an additional urea transporter isoform in the IMCD. Am J Physiol Renal Physiol. 2001;280(2):F325–32.

    PubMed  CAS  Google Scholar 

  123. Stewart GS, Fenton RA, Wang W, Kwon TH, White SJ, Collins VM, et al. The basolateral expression of mUT-A3 in the mouse kidney. Am J Physiol Renal Physiol. 2004;286(5):F979–87.

    PubMed  CAS  Google Scholar 

  124. Blount MA, Klein JD, Martin CF, Tchapyjnikov D, Sands JM. Forskolin stimulates phosphorylation and membrane accumulation of UT-A3. Am J Physiol Renal Physiol. 2007;293(4):F1308–13.

    PubMed  CAS  Google Scholar 

  125. You G, Smith CP, Kanai Y, Lee W-S, Stelzner M, Hediger MA. Cloning and characterization of the vasopressin-regulated urea transporter. Nature. 1993;365:844–7.

    PubMed  CAS  Google Scholar 

  126. Olives B, Neau P, Bailly P, Hediger MA, Rousselet G, Cartron JP, et al. Cloning and functional expression of a urea transporter from human bone marrow cells. J Biol Chem. 1994;269(50):31649–52.

    PubMed  CAS  Google Scholar 

  127. Yang BX, Verkman AS. Urea transporter UT3 functions as an efficient water channel—Direct evidence for a common water/urea pathway. J Biol Chem. 1998;273(16):9369–72.

    PubMed  CAS  Google Scholar 

  128. Yang B, Bankir L, Gillespie A, Epstein CJ, Verkman AS. Urea-selective concentrating defect in transgenic mice lacking urea transporter UT-B. J Biol Chem. 2002;277:10633–7.

    PubMed  CAS  Google Scholar 

  129. Sidoux-Walter F, Lucien N, Olivès B, Gobin R, Rousselet G, Kamsteeg EJ, et al. At physiological expression levels the Kidd blood group/urea transporter protein is not a water channel. J Biol Chem. 1999;274(42):30228–35.

    PubMed  CAS  Google Scholar 

  130. Yang B, Verkman AS. Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. J Biol Chem. 2002;277(39):36782–6.

    PubMed  CAS  Google Scholar 

  131. Zhang C, Sands JM, Klein JD. Vasopressin rapidly increases the phosphorylation of the UT-A1 urea transporter activity in rat IMCDs through PKA. Am J Physiol Renal Physiol. 2002;282(1):F85–90.

    PubMed  CAS  Google Scholar 

  132. Blount MA, Mistry AC, Fröhlich O, Price SR, Chen G, Sands JM, et al. Phosphorylation of UT-A1 urea transporter at serines 486 and 499 is important for vasopressin-regulated activity and membrane accumulation. Am J Physiol Renal Physiol. 2008;295(1):F295–9.

    PubMed  CAS  Google Scholar 

  133. Hwang S, Gunaratne R, Rinschen MM, Yu M-J, Pisitkun T, Hoffert JD, et al. Vasporessin increases phosphorylation of ser84 and ser486 in Slc14a2 collecting duct urea transporters. Am J Physiol Renal Physiol. 2010;299(3):F559–67.

    PubMed  CAS  Google Scholar 

  134. Mistry AC, Mallick R, Klein JD, Sands JM, Froehlich O. Functional characterization of the central hydrophilic linker region of the urea transporter UT-A1: cAMP activation and snapin binding. Am J Physiol Cell Physiol. 2010;298:C1431–7.

    PubMed  CAS  Google Scholar 

  135. Smith CP, Potter EA, Fenton RA, Stewart GS. Characterization of a human colonic cDNA encoding a structurally novel urea transporter, UT-A6. Am J Physiol Cell Physiol. 2004;287(4):C1087–93.

    PubMed  CAS  Google Scholar 

  136. Stewart GS, O’Brien JH, Smith CP. Ubiquitination regulates the plasma membrane expression of renal UT-A urea transporters. Am J Physiol Cell Physiol. 2008;295:C121–9.

    PubMed  CAS  Google Scholar 

  137. Chen G, Huang H, Fröhlich O, Yang Y, Klein JD, Price SR, et al. MDM2 E3 ubiquitin ligase mediates UT-A1 urea transporter ubiquitination and degradation. Am J Physiol Renal Physiol. 2008;295(5):F1528–34.

    PubMed  CAS  Google Scholar 

  138. Gillin AG, Sands JM. Characteristics of osmolarity-stimulated urea transport in rat IMCD. Am J Physiol. 1992;262:F1061–7.

    PubMed  CAS  Google Scholar 

  139. Blessing NW, Blount MA, Sands JM, Martin CF, Klein JD. Urea transporters UT-A1 and UT-A3 accumulate in the plasma membrane in response to increased hypertonicity. Am J Physiol Renal Physiol. 2008;295(5):F1336–41.

    PubMed  CAS  Google Scholar 

  140. Klein JD, Fröhlich O, Blount MA, Martin CF, Smith TD, Sands JM. Vasopressin increases plasma membrane accumulation of urea transporter UT-A1 in rat inner medullary collecting ducts. J Am Soc Nephrol. 2006;17:2680–6.

    PubMed  CAS  Google Scholar 

  141. Harrington AR, Valtin H. Impaired urinary concentration after vasopressin and its gradual correction in hypothalamic diabetes insipidus. J Clin Invest. 1968;47:502–10.

    PubMed  CAS  Google Scholar 

  142. Kim D-U, Sands JM, Klein JD. Role of vasopressin in diabetes mellitus-induced changes in medullary transport proteins involved in urine concentration in Brattleboro rats. Am J Physiol Renal Physiol. 2004;286:F760–66.

    PubMed  CAS  Google Scholar 

  143. Nakayama Y, Naruse M, Karakashian A, Peng T, Sands JM, Bagnasco SM. Cloning of the rat Slc14a2 gene and genomic organization of the UT-A urea transporter. Biochim Biophys Acta. 2001;1518: 19–26.

    PubMed  CAS  Google Scholar 

  144. Nakayama Y, Peng T, Sands JM, Bagnasco SM. The TonE/TonEBP pathway mediates tonicity-responsive regulation of UT-A urea transporter expression. J Biol Chem. 2000;275(49):38275–80.

    PubMed  CAS  Google Scholar 

  145. Sands JM, Gargus JJ, Fröhlich O, Gunn RB, Kokko JP. Urinary concentrating ability in patients with Jk(a-b-) blood type who lack carrier-mediated urea transport. J Am Soc Nephrol. 1992;2:1689–96.

    PubMed  CAS  Google Scholar 

  146. Bankir L, Chen K, Yang B. Lack of UT-B in vasa recta and red blood cells prevents urea-induced improvement of urinary concentrating ability. Am J Physiol Renal Physiol. 2004;286(1):F144–51.

    PubMed  CAS  Google Scholar 

  147. Klein JD, Sands JM, Qian L, Wang X, Yang B. Upregulation of urea transporter UT-A2 and water channels AQP2 and AQP3 in mice lacking urea transporter UT-B. J Am Soc Nephrol. 2004;15(5): 1161–7.

    PubMed  CAS  Google Scholar 

  148. Layton AT. Role of UTB urea transporters in the urine concentrating mechanism of the rat kidney. Bull Math Biol. 2007;69(3):887–929.

    PubMed  CAS  Google Scholar 

  149. Edwards A, Pallone TL. Facilitated transport in vasa recta: Theoretical effects on solute exchange in the medullary microcirculation. Am J Physiol Renal Physiol. 1997;272(4):F505–14.

    CAS  Google Scholar 

  150. Edwards A, Pallone TL. A multiunit model of solute and water removal by inner medullary vasa recta. Am J Physiol Heart Circ Physiol. 1998;274(4): H1202–10.

    CAS  Google Scholar 

  151. Berliner RW, Levinsky NG, Davidson DG, Eden M. Dilution and concentration of the urine and the action of antidiuretic hormone. Am J Med. 1958;24:730–44.

    PubMed  CAS  Google Scholar 

  152. Sands JM. Critical role of urea in the urine-concentrating mechanism. J Am Soc Nephrol. 2007;18(3): 670–1.

    PubMed  CAS  Google Scholar 

  153. Lemley KV, Kriz W. Cycles and separations: the histotopography of the urinary concentrating process. Kidney Int. 1987;31:538–48.

    PubMed  CAS  Google Scholar 

  154. Pannabecker TL, Dantzler WH. Three-dimensional architecture of inner medullary vasa recta. Am J Physiol Renal Physiol. 2006;290(6):F1355–66.

    PubMed  CAS  Google Scholar 

  155. Knepper MA, Roch-Ramel F. Pathways of urea transport in the mammalian kidney. Kidney Int. 1987;31:629–33.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This chapter is an expanded version of two articles published originally as Sands JM, Layton HE. The physiology of urinary concentration: an update. Semin Nephrol. 2009;29(3):178–95, copyright Elsevier Inc.; and Mount DB. The brain in hyponatremia: both culprit and victim. Semin Nephrol. 2009;29(3):196–215, copyright Elsevier Inc., 2009.

This work was supported by National Institutes of Health grants R01-DK41707 to J.M.S., R01-DK42091 to H.E.L., and PO1-DK070756 to D.B.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff M. Sands M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sands, J.M., Mount, D.B., Layton, H.E. (2013). The Physiology of Water Homeostasis. In: Mount, D., Sayegh, M., Singh, A. (eds) Core Concepts in the Disorders of Fluid, Electrolytes and Acid-Base Balance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3770-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3770-3_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3769-7

  • Online ISBN: 978-1-4614-3770-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics