Skip to main content

Metabolism and Transportation Pathways Of GDP-Fucose that are Required for the O-Fucosylation Of Notch

  • Chapter
Notch Signaling in Embryology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 727))

Abstract

Notch is a single-pass transmembrane receptor that mediates the local cell-cell interactions necessary for many cell-fate decisions. The extra cellular domain of Notch contains a tandem array of epidermal growth factor-like (EGF-like) repeats. Some of these EGF-like repeats are O-fucosylated by protein O-fucosyltransferase 1 (O-fut1), which is essential for Notch signaling in Drosophila and mouse. This O-fucose is further modified by Fringe, a GlcNAc transferase and other glycosyltransferases (O-fut1 in Drosophila and Pofut1 in mouse), to form an O-linked tetrasaccharide, which modulates Notch’s selective binding to its ligands

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999; 284(5415):770–776.

    Article  PubMed  CAS  Google Scholar 

  2. Kidd S, Lockett TJ, Young MW. The Notch locus of Drosophila melanogaster. Cell 1983; 34(2):421–433.

    Article  PubMed  CAS  Google Scholar 

  3. Wharton KA, Johansen KM, Xu T et al. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 1985; 43(3 Pt 2):567–581.

    Article  PubMed  CAS  Google Scholar 

  4. Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137(2):216–233.

    Article  PubMed  CAS  Google Scholar 

  5. Blaumueller CM, Qi H, Zagouras P et al. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 1997; 90(2):281–291.

    Article  PubMed  CAS  Google Scholar 

  6. Moloney DJ, Shair LH, Lu FM et al. Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules. J Biol Chem 2000; 275(13):9604–9611.

    Article  PubMed  CAS  Google Scholar 

  7. Harris RJ, Spellman MW. O-linked fucose and other posttranslational modifications unique to EGF modules. Glycobiology 1993; 3(3):219–224.

    Article  PubMed  CAS  Google Scholar 

  8. Panin VM, Shao L, Lei L et al. Notch ligands are substrates for protein O-fucosyltransferase-1 and Fringe. J Biol Chem 2002; 277(33):29945–29952.

    Article  PubMed  CAS  Google Scholar 

  9. Okajima T, Irvine KD. Regulation of notch signaling by O-linked fucose. Cell 2002; 111(6):893–904.

    Article  PubMed  CAS  Google Scholar 

  10. Moloney DJ, Panin VM, Johnston SH et al. Fringe is a glycosyltransferase that modifies Notch. Nature 2000; 406(6794):369–375.

    Article  PubMed  CAS  Google Scholar 

  11. Bruckner K, Perez L, Clausen H et al. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 2000; 406(6794):411–415.

    Article  PubMed  CAS  Google Scholar 

  12. Hiruma-Shimizu K, Hosoguchi K, Liu Y et al. Chemical synthesis, folding and structural insights into O-fucosylated epidermal growth factor-like repeat 12 of mouse Notch-1 receptor. J Am Chem Soc 2010; 132(42):14857–14865.

    Article  PubMed  CAS  Google Scholar 

  13. Sasamura T, Sasaki N, Miyashita F et al. neurotic, a novel maternal neurogenic gene, encodes an O-fucosyltransferase that is essential for Notch-Delta interactions. Development 2003; 130(20):4785–4795.

    Article  PubMed  CAS  Google Scholar 

  14. Irvine KD. Fringe, Notch and making developmental boundaries. Curr Opin Genet Dev 1999; 9(4):434–441.

    Article  PubMed  CAS  Google Scholar 

  15. Acar M, Jafar-Nejad H, Takeuchi H et al. Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell 2008; 132(2):247–258.

    Article  PubMed  CAS  Google Scholar 

  16. Omichi K, Aoki K, Minamida S et al. Presence of UDP-D-xylose: beta-D-glucoside alpha-1, 3-D-xylosyltransferase involved in the biosynthesis of the Xyl alpha 1-3Glc beta-Ser structure of glycoproteins in the human hepatoma cell line HepG2. Eur J Biochem 1997; 245(1):143–146.

    Article  PubMed  CAS  Google Scholar 

  17. Shi S, Stanley P. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc Natl Acad Sci USA 2003; 100(9):5234–5239.

    Article  PubMed  CAS  Google Scholar 

  18. Blair SS. Notch signaling: Fringe really is a glycosyltransferase. Curr Biol 2000; 10(16):R608–612.

    Article  PubMed  CAS  Google Scholar 

  19. Okajima T, Xu A, Lei L et al. Chaperone activity of protein O-fucosyltransferase 1 promotes notch receptor folding. Science 2005; 307(5715):1599–1603.

    Article  PubMed  CAS  Google Scholar 

  20. Sasamura T, Ishikawa HO, Sasaki N et al. The O-fucosyltransferase O-fut1 is an extracellular component that is essential for the constitutive endocytic trafficking of Notch in Drosophila. Development 2007; 134(7):1347–1356.

    Article  PubMed  CAS  Google Scholar 

  21. Stahl M, Uemura K, Ge C et al. Roles of Pofut1 and O-fucose in mammalian Notch signaling. J Biol Chem 2008; 283(20):13638–13651.

    Article  PubMed  CAS  Google Scholar 

  22. Okajima T, Reddy B, Matsuda T et al. Contributions of chaperone and glycosyltransferase activities of O-fucosyltransferase 1 to Notch signaling. BMC Biol 2008; 6:1.

    Article  PubMed  Google Scholar 

  23. Lowe, J B. (Fukuda, M. and Hindsgaul, O., eds) Molecular Glycobiology 1994; 163–205.

    Google Scholar 

  24. Takatalo MS, Kouvonen P, Corthals G et al. Identification of new Golgi complex specific proteins by direct organelle proteomic analysis. Proteomics 2006; 6(12):3502–3508.

    Article  PubMed  CAS  Google Scholar 

  25. Becker DJ, Lowe JB. Fucose: biosynthesis and biological function in mammals. Glycobiology 2003; 13(7):41R–53R.

    Article  PubMed  CAS  Google Scholar 

  26. Ginsburg V. Studies on the biosynthesis of guanosine diphosphate L-fucose. J Biol Chem 1961; 236:2389–2393.

    PubMed  CAS  Google Scholar 

  27. Markovitz A. Biosynthesis of Guanosine Diphosphate D-Rhamnose and Guanosine Diphosphate D-Talomethylose from Guanosine Diphosphate Alpha-D-Mannose. J Biol Chem 1964; 239:2091–2098.

    PubMed  CAS  Google Scholar 

  28. Haltiwanger RS. Fucose is on the TRAIL of colon cancer. Gastroenterology 2009; 137(1):36–39.

    Article  PubMed  CAS  Google Scholar 

  29. Roos C, Kolmer M, Mattila P et al. Composition of Drosophila melanogaster proteome involved in fucosylated glycan metabolism. J Biol Chem 2002; 277(5):3168–3175.

    Article  PubMed  CAS  Google Scholar 

  30. Smith PL, Myers JT, Rogers CE et al. Conditional control of selectin ligand expression and global fucosylation events in mice with a targeted mutation at the FX locus. J Cell Biol 2002; 158(4):801–815.

    Article  PubMed  CAS  Google Scholar 

  31. Broschat KO, Chang S, Serif G. Purification and characterization of GDP-D-mannose 4,6-dehydratase from porcine thyroid. Eur J Biochem 1985; 153(2):397–401.

    Article  PubMed  CAS  Google Scholar 

  32. Sullivan FX, Kumar R, Kriz R et al. Molecular cloning of human GDP-mannose 4,6-dehydratase and reconstitution of GDP-fucose biosynthesis in vitro. J Biol Chem 1998; 273(14):8193–8202.

    Article  PubMed  CAS  Google Scholar 

  33. Ishikawa HO, Higashi S, Ayukawa T et al. Notch deficiency implicated in the pathogenesis of congenital disorder of glycosylation IIc. Proc Natl Acad Sci USA 2005; 102(51):18532–18537.

    Article  PubMed  CAS  Google Scholar 

  34. Ayukawa T, Matsuno K. Studies on Functions of Notch O-Fucosylation in Drosophila. Experimental Glycoscience 2008; 295–298.

    Google Scholar 

  35. Ishikawa HO, Ayukawa T, Nakayama M et al. Two pathways for importing GDP-fucose into the endoplasmic reticulum lumen function redundantly in the O-fucosylation of Notch in Drosophila. J Biol Chem 2010; 285(6):4122–4129.

    Article  PubMed  CAS  Google Scholar 

  36. Etzioni A, Frydman M, Pollack S et al. Brief report: recurrent severe infections caused by a novel leukocyte adhesion deficiency. N Engl J Med 1992; 327(25):1789–1792.

    Article  PubMed  CAS  Google Scholar 

  37. Hirschberg CB. Golgi nucleotide sugar transport and leukocyte adhesion deficiency II. J Clin Invest 2001; 108(1):3–6.

    PubMed  CAS  Google Scholar 

  38. Ishida N, Kawakita M. Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35). Pflugers Arch 2004; 447(5):768–775.

    Article  PubMed  CAS  Google Scholar 

  39. Luhn K, Wild MK, Eckhardt M et al. The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet 2001; 28(1):69–72.

    PubMed  CAS  Google Scholar 

  40. Lubke T, Marquardt T, Etzioni A et al. Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 2001; 28(1):73–76.

    PubMed  CAS  Google Scholar 

  41. Becker DJ, Lowe JB. Leukocyte adhesion deficiency pha II. Biochim Biophys Acta 1999; 1455(2–3):193–204.

    PubMed  CAS  Google Scholar 

  42. Capasso JM, Hirschberg CB. Mechanisms of glycosylation and sulfation in the Golgi apparatus: evidence for nucleotide sugar/nucleoside monophosphate and nucleotide sulfate/nucleoside monophosphate antiports in the Golgi apparatus membrane. Proc Natl Acad Sci USA 1984; 81(22):7051–7055.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Matsuno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Yamakawa, T., Ayukawa, T., Matsuno, K. (2012). Metabolism and Transportation Pathways Of GDP-Fucose that are Required for the O-Fucosylation Of Notch. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 727. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0899-4_3

Download citation

Publish with us

Policies and ethics