Skip to main content

Notch and the p53 Clan of Transcription Factors

  • Chapter
Notch Signaling in Embryology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 727))

Abstract

Notch 1 to 4 and the p53 clan, comprising p53, p63 and p73 plus numerous isoforms thereof, are gene transcription regulators that are critically involved in various aspects of cell differentiation, stem cell maintenance and tumour suppression. It is thus perhaps no surprise that extensive crosstalk between the Notch and p53 pathways is implemented during these processes. Typically, Notch together with p53 and even more so with transactivation competent p63 or p73, drives differentiation, whereas Notch combined with transactivation impaired p63 or p73 helps maintain undifferentiated stem cell compartments. With regard to cancer, it seems that Notch acts as a tumour suppressor in cellular contexts where Notch signalling supports p53 activation and both together can bring on its way an anti-proliferative programme of differentiation, senescence or apoptosis. In contrast, Notch often acts as an oncoprotein in contexts where it suppresses p53 activation and activity and where differentiation is unwanted. It is no accident that the latter pathways—the inhibition by Notch of p53 and differentiation—are operative in somatic stem cells as well as in tumour cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006; 7(9):678–689.

    PubMed  CAS  Google Scholar 

  2. Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8(4):275–283.

    PubMed  CAS  Google Scholar 

  3. Vousden KH, Prives C. Blinded by the Light: The Growing Complexity of p53. Cell 2009; 137(3):413–431.

    PubMed  CAS  Google Scholar 

  4. McKeon F, Melino G. Fog of war: the emerging p53 family. Cell Cycle 2007; 6(3):229–232.

    PubMed  CAS  Google Scholar 

  5. Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 2006; 13(6):962–972.

    PubMed  CAS  Google Scholar 

  6. Riley T, Sontag E, Chen P et al. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 2008; 9(5):402–412.

    PubMed  CAS  Google Scholar 

  7. Perez CA, Pietenpol JA. Transcriptional programs regulated by p63 in normal epithelium and tumors. Cell Cycle 2007; 6(3):246–254.

    PubMed  CAS  Google Scholar 

  8. Sbisa E, Catalano D, Grillo G et al. p53FamTaG: a database resource of human p53, p63 and p73 direct target genes combining in silico prediction and microarray data. BMC Bioinformatics 2007; 8(Suppl 1):S20.

    Google Scholar 

  9. Lin T, Chao C, Saito S et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression.Nat Cell Biol 2005; 7(2):165–171. Epub 2004 2026.

    PubMed  CAS  Google Scholar 

  10. Wilson A, Radtke F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett 2006; 580(12):2860–2868.

    PubMed  CAS  Google Scholar 

  11. Borggrefe T, Oswald F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 2009; 66(10):1631–1646.

    PubMed  CAS  Google Scholar 

  12. D’Souza B, Miyamoto A, Weinmaster G. The many facets of Notch ligands. Oncogene 2008; 27(38):5148–5167.

    PubMed  Google Scholar 

  13. Klein T, Brennan K, Arias AM. An intrinsic dominant negative activity of serrate that is modulated during wing development in Drosophila. Dev Biol 1997; 189(1):123–134.

    PubMed  CAS  Google Scholar 

  14. Micchelli CA, Rulifson EJ, Blair SS. The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development 1997; 124(8):1485–1495.

    PubMed  CAS  Google Scholar 

  15. Chitnis A. Why is delta endocytosis required for effective activation of notch? Dev Dyn 2006; 235(4):886–894.

    PubMed  CAS  Google Scholar 

  16. Le Borgne R, Bardin A, Schweisguth F. The roles of receptor and ligand endocytosis in regulating Notch signaling. Development 2005; 132(8):1751–1762.

    PubMed  Google Scholar 

  17. Okajima T, Irvine KD. Regulation of notch signaling by o-linked fucose. Cell 2002; 111(6):893–904.

    PubMed  CAS  Google Scholar 

  18. Okajima T, Xu A, Lei L et al. Chaperone activity of protein O-fucosyltransferase 1 promotes notch receptor folding. Science 2005; 307(5715):1599–1603.

    PubMed  CAS  Google Scholar 

  19. Hutterer A, Knoblich JA. Numb and alpha-Adaptin regulate Sanpodo endocytosis to specify cell fate in Drosophila external sensory organs. EMBO Rep 2005; 6(9):836–842.

    PubMed  CAS  Google Scholar 

  20. Le Borgne R, Schweisguth F. Unequal segregation of Neuralized biases Notch activation during asymmetric cell division. Dev Cell 2003; 5(1):139–148.

    PubMed  Google Scholar 

  21. Shaye DD, Greenwald I. Endocytosis-mediated downregulation of LIN-12/Notch upon Ras activation in Caenorhabditis elegans. Nature 2002; 420(6916):686–690.

    PubMed  CAS  Google Scholar 

  22. Shaye DD, Greenwald I. LIN-12/Notch trafficking and regulation of DSL ligand activity during vulval induction in Caenorhabditis elegans. Development 2005; 132(22):5081–5092.

    PubMed  CAS  Google Scholar 

  23. Lai EC, Tam B, Rubin GM. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-and K-box-class microRNAs. Genes Dev 2005; 19(9):1067–1080.

    PubMed  CAS  Google Scholar 

  24. Mumm JS, Schroeter EH, Saxena MT et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell 2000; 5(2):197–206.

    PubMed  CAS  Google Scholar 

  25. Gupta-Rossi N, Six E, LeBail O et al. Monoubiquitination and endocytosis direct gamma-secretase cleavage of activated Notch receptor. J Cell Biol 2004; 166(1):73–83.

    PubMed  CAS  Google Scholar 

  26. Hsu KW, Hsieh RH, Lee YH et al. The activated Notch1 receptor cooperates with alpha-enolase and MBP-1 in modulating c-myc activity. Mol Cell Biol 2008; 28(15):4829–4842.

    PubMed  CAS  Google Scholar 

  27. Tun T, Hamaguchi Y, Matsunami N et al. Recognition sequence of a highly conserved DNA binding protein RBP-J kappa. Nucleic Acids Res 1994; 22(6):965–971.

    PubMed  CAS  Google Scholar 

  28. Oswald F, Tauber B, Dobner T et al. p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol Cell Biol 2001; 21(22):7761–7774.

    PubMed  CAS  Google Scholar 

  29. Wallberg AE, Pedersen K, Lendahl U et al. p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Mol Cell Biol 2002; 22(22):7812–7819.

    PubMed  CAS  Google Scholar 

  30. Kurooka H, Honjo T. Functional interaction between the mouse notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J Biol Chem 2000; 275(22):17211–17220.

    PubMed  CAS  Google Scholar 

  31. Fryer CJ, Lamar E, Turbachova I et al. Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev 2002; 16(11):1397–1411.

    PubMed  CAS  Google Scholar 

  32. Fryer CJ, White JB, Jones KA. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2004; 16(4):509–520.

    PubMed  CAS  Google Scholar 

  33. Kao HY, Ordentlich P, Koyano-Nakagawa N et al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev 1998; 12(15):2269–2277.

    PubMed  CAS  Google Scholar 

  34. Wang J, Scully K, Zhu X et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 2007; 446(7138):882–887.

    PubMed  CAS  Google Scholar 

  35. Bracken AP, Dietrich N, Pasini D et al. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 2006; 20(9):1123–1136. Epub 2006 1117.

    PubMed  CAS  Google Scholar 

  36. Fischer A, Gessler M. Delta-Notch—and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res 2007; 35(14):4583–4596.

    PubMed  CAS  Google Scholar 

  37. Kageyama R, Ohtsuka T. The Notch-Hes pathway in mammalian neural development. Cell Res 1999; 9(3):179–188.

    PubMed  CAS  Google Scholar 

  38. Lai EC. Notch signaling: control of cell communication and cell fate. Development 2004; 131(5):965–973.

    PubMed  CAS  Google Scholar 

  39. Furriols M, Bray S. A model Notch response element detects Suppressor of Hairless-dependent molecular switch. Curr Biol 2001; 11(1):60–64.

    PubMed  CAS  Google Scholar 

  40. Brandt T, Petrovich M, Joerger AC et al. Conservation of DNA-binding specificity and oligomerisation properties within the p53 family. BMC Genomics 2009; 10:628.

    PubMed  Google Scholar 

  41. Osada M, Park HL, Nagakawa Y et al. Differential recognition of response elements determines target gene specificity for p53 and p63. Mol Cell Biol 2005; 25(14):6077–6089.

    PubMed  CAS  Google Scholar 

  42. Hollstein M, Hainaut P. Massively regulated genes: the example of TP53. J 2009; 220(2):164-173. 43. Kruse JP, Gu W. Modes of p53 regulation. Cell 2009; 137(4):609–622.

    Google Scholar 

  43. Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 2006; 6(12):909–923.

    PubMed  CAS  Google Scholar 

  44. Ashcroft M, Taya Y, Vousden KH. Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol 2000; 20(9):3224–3233.

    PubMed  CAS  Google Scholar 

  45. Blattner C, Tobiasch E, Litfen M et al. DNA damage induced p53 stabilization: no indication for an involvement of p53 phosphorylation. Oncogene 1999; 18(9):1723–1732.

    PubMed  CAS  Google Scholar 

  46. Wu Z, Earle J, Saito S et al. Mutation of mouse p53 Ser23 and the response to DNA damage. Mol Cell Biol 2002; 22(8):2441–2449.

    PubMed  CAS  Google Scholar 

  47. Wang X, Taplick J, Geva N et al. Inhibition of p53 degradation by Mdm2 acetylation. FEBS Lett 2004; 561(1–3):195–201.

    PubMed  CAS  Google Scholar 

  48. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997; 90(4):595–606.

    PubMed  CAS  Google Scholar 

  49. Tang Y, Zhao W, Chen Y et al. Acetylation is indispensable for p53 activation. Cell 2008; 133(4):612–626.

    PubMed  CAS  Google Scholar 

  50. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009; 9(10):749–758.

    PubMed  CAS  Google Scholar 

  51. Feng Z, Hu W, Rajagopal G et al. The tumor suppressor p53: cancer and aging. Cell Cycle 2008; 7(7):842–847.

    PubMed  CAS  Google Scholar 

  52. Hu W, Feng Z, Atwal GS et al p53: a new player in reproduction. Cell Cycle 2008; 7(7):848–852. Epub 2008.

    PubMed  CAS  Google Scholar 

  53. Gatza C, Moore L, Dumble M et al. Tumor suppressor dosage regulates stem cell dynamics during aging. Cell Cycle 2007; 6(1):52–55.

    PubMed  CAS  Google Scholar 

  54. Candi E, Dinsdale D, Rufini A et al. TAp63 and DeltaNp63 in cancer and epidermal development. Cell Cycle 2007; 6(3):274–285.

    PubMed  CAS  Google Scholar 

  55. Gressner O, Schilling T, Lorenz K et al. TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J 2005; 24(13):2458–2471.

    PubMed  CAS  Google Scholar 

  56. Flores ER. The roles of p63 in cancer. Cell Cycle 2007; 6(3):300–304.

    PubMed  CAS  Google Scholar 

  57. Park BJ, Lee SJ, Kim JI et al. Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Res 2000; 60(13):3370–3374.

    PubMed  CAS  Google Scholar 

  58. Wang S, El-Deiry WS. p73 or p53 directly regulates human p53 transcription to maintain cell cycle checkpoints. Cancer Res 2006; 66(14):6982–6989.

    PubMed  CAS  Google Scholar 

  59. Tomasini R, Tsuchihara K, Wilhelm M et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev 2008; 22(19):2677–2691.

    PubMed  CAS  Google Scholar 

  60. Lin YL, Sengupta S, Gurdziel K et al. p63 and p73 transcriptionally regulate genes involved in DNA repair. PLoS Genet 2009; 5(10):e1000680.

    Google Scholar 

  61. Talos F, Nemajerova A, Flores ER et al. p73 suppresses polyploidy and aneuploidy in the absence of functional p53. Mol Cell 2007; 27(4):647–659.

    PubMed  CAS  Google Scholar 

  62. Danilova N, Sakamoto KM, Lin S. p53 family in development. Mech Dev 2008; 125(11–12):919–931.

    PubMed  CAS  Google Scholar 

  63. Wallingford JB, Seufert DW, Virta VC et al. p53 activity is essential for normal development in Xenopus. Curr Biol 1997; 7(10):747–757.

    PubMed  CAS  Google Scholar 

  64. Choi J, Donehower LA. p53 in embryonic development: maintaining a fine balance. Cell Mol Life Sci 1999; 55(1):38–47.

    PubMed  CAS  Google Scholar 

  65. Varley JM. Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 2003; 21(3):313–320.

    PubMed  CAS  Google Scholar 

  66. Gil-Perotin S, Marin-Husstege M, Li J et al. Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J Neurosci 2006; 26(4):1107–1116.

    PubMed  CAS  Google Scholar 

  67. Dumble M, Moore L, Chambers SM et al. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 2007; 109(4):1736–1742.

    PubMed  CAS  Google Scholar 

  68. Matoba S, Kang JG, Patino WD et al. p53 regulates mitochondrial respiration. Science 2006; 312(5780):1650–1653.

    PubMed  CAS  Google Scholar 

  69. Marine JC, Francoz S, Maetens M et al. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 2006; 13(6):927–934.

    PubMed  CAS  Google Scholar 

  70. Jacobs WB, Walsh GS, Miller FD. Neuronal survival and p73/p63/p53: a family affair. Neuroscientist 2004; 10(5):443–455.

    PubMed  CAS  Google Scholar 

  71. Jacobs WB, Govoni G, Ho D et al. p63 is an essential proapoptotic protein during neural development. Neuron 2005; 48(5):743–756.

    PubMed  CAS  Google Scholar 

  72. Miller FD, Kaplan DR. To die or not to die: neurons and p63. Cell Cycle 2007; 6(3):312–317.

    PubMed  CAS  Google Scholar 

  73. Yi R, Poy MN, Stoffel M et al. A skin microRNA promotes differentiation by repressing’ stemness’. Nature 2008; 452(7184):225–229.

    PubMed  CAS  Google Scholar 

  74. Mikkola ML. p63 in skin appendage development. Cell Cycle 2007; 6(3):285–290.

    PubMed  CAS  Google Scholar 

  75. Truong AB, Kretz M, Ridky TW et al. p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev 2006; 20(22):3185–3197.

    PubMed  CAS  Google Scholar 

  76. Koster MI, Dai D, Roop DR. Conflicting roles for p63 in skin development and carcinogenesis. Cell Cycle 2007; 6(3):269–273.

    PubMed  CAS  Google Scholar 

  77. Suh EK, Yang A, Kettenbach A et al. p63 protects the female germ line during meiotic arrest. Nature 2006; 444(7119):624–628.

    PubMed  CAS  Google Scholar 

  78. Lowell S, Jones P, Le Roux I et al. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr Biol 2000; 10(9):491–500.

    PubMed  CAS  Google Scholar 

  79. Nickoloff BJ, Qin JZ, Chaturvedi V et al. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-kappaB and PPARgamma. Cell Death Differ 2002; 9(8):842–855.

    PubMed  CAS  Google Scholar 

  80. Rangarajan A, Talora C, Okuyama R et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20(13):3427–3436.

    PubMed  CAS  Google Scholar 

  81. Blanpain C, Lowry WE, Pasolli HA et al. Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev 2006; 20(21):3022–3035.

    PubMed  CAS  Google Scholar 

  82. Lefort K, Mandinova A, Ostano P et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev 2007; 21(5):562–577.

    PubMed  CAS  Google Scholar 

  83. Yugawa T, Handa K, Narisawa-Saito M et al. Regulation of Notch1 gene expression by p53 in epithelial cells. Mol Cell Biol 2007; 27(10):3732–3742.

    PubMed  CAS  Google Scholar 

  84. Boggs K, Henderson B, Reisman D. RBP-Jkappa binds to and represses transcription of the p53 tumor suppressor gene. Cell Biol Int 2009; 33(3):318–324.

    PubMed  CAS  Google Scholar 

  85. Huang Q, Raya A, DeJesus P et al. Identification of p53 regulators by genome-wide functional analysis. Proc Natl Acad Sci USA 2004; 101(10):3456–3461.

    PubMed  CAS  Google Scholar 

  86. Pastorcic M, Das HK. Regulation of transcription of the human presenilin-1 gene by ets transcription factors and the p53 protooncogene. J Biol Chem 2000; 275(45):34938–34945.

    PubMed  CAS  Google Scholar 

  87. Amson R, Lassalle JM, Halley H et al. Behavioral alterations associated with apoptosis and down-regulation of presenilin 1 in the brains of p53-deficient mice. Proc Natl Acad Sci USA 2000; 97(10):5346–5350.

    PubMed  CAS  Google Scholar 

  88. Roperch JP, Alvaro V, Prieur S et al. Inhibition of presenilin 1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression. Nat Med 1998; 4(7):835–838.

    PubMed  CAS  Google Scholar 

  89. Yang A, Kaghad M, Wang Y et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing and dominant-negative activities. Mol Cell 1998; 2(3):305–316.

    PubMed  CAS  Google Scholar 

  90. Lee H, Kimelman D. A dominant-negative form of p63 is required for epidermal proliferation in zebrafish. Dev Cell 2002; 2(5):607–616.

    PubMed  CAS  Google Scholar 

  91. Pellegrini G, Dellambra E, Golisano O et al. p63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA 2001; 98(6):3156–3161.

    PubMed  CAS  Google Scholar 

  92. Westfall MD, Mays DJ, Sniezek JC et al. The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells Syndrome-derived mutations. Mol Cell Biol 2003; 23(7):2264–2276.

    PubMed  CAS  Google Scholar 

  93. Nylander K, Vojtesek B, Nenutil R et al. Differential expression of p63 isoforms in normal tissues and neoplastic cells. J Pathol 2002; 198(4):417–427.

    PubMed  CAS  Google Scholar 

  94. Wu G, Nomoto S, Hoque MO et al. DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res 2003; 63(10):2351–2357.

    PubMed  CAS  Google Scholar 

  95. Sasaki Y, Ishida S, Morimoto I et al. The p53 family member genes are involved in the Notch signal pathway. J Biol Chem 2002; 277(1):719–724.

    PubMed  CAS  Google Scholar 

  96. Candi E, Rufini A, Terrinoni A et al. DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci USA 2007; 104(29):11999–12004.

    PubMed  CAS  Google Scholar 

  97. Nguyen BC, Lefort K, Mandinova A et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev 2006; 20(8):1028–1042.

    PubMed  CAS  Google Scholar 

  98. Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P et al. miR-203 represses’ stemness’ by repressing DeltaNp63. Cell Death Differ 2008; 15(7):1187–1195.

    PubMed  CAS  Google Scholar 

  99. Thatcher EJ, Flynt AS, Li N et al. MiRNA expression analysis during normal zebrafish development and following inhibition of the Hedgehog and Notch signaling pathways. Dev Dyn 2007; 236(8):2172–2180.

    PubMed  CAS  Google Scholar 

  100. Yoo AS, Greenwald I. LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans. Science 2005; 310(5752):1330–1333.

    PubMed  CAS  Google Scholar 

  101. Giudicelli F, Lewis J. The vertebrate segmentation clock. Curr Opin Genet Dev 2004; 14(4):407–414.

    PubMed  CAS  Google Scholar 

  102. Lewis J. From signals to patterns: space, time and mathematics in developmental biology. Science 2008; 322(5900):399–403.

    PubMed  CAS  Google Scholar 

  103. Kim SB, Chae GW, Lee J et al. Activated Notch1 interacts with p53 to inhibit its phosphorylation and transactivation. Cell Death Differ 2007; 14(5):982–991.

    PubMed  Google Scholar 

  104. McElhinny AS, Li JL, Wu L. Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene 2008; 27(38):5138–5147.

    PubMed  CAS  Google Scholar 

  105. Zhao Y, Katzman RB, Delmolino LM et al. The notch regulator MAML1 interacts with p53 and functions as a coactivator. J Biol Chem 2007; 282(16):11969–11981.

    PubMed  CAS  Google Scholar 

  106. Saint Just Ribeiro M, Hansson ML, Wallberg AE. A proline repeat domain in the Notch co-activator MAML1 is important for the p300-mediated acetylation of MAML1. Biochem J 2007; 404(2):289–298.

    PubMed  CAS  Google Scholar 

  107. Yogosawa S, Miyauchi Y, Honda R et al. Mammalian Numb is a target protein of Mdm2, ubiquitin ligase. Biochem Biophys Res Commun 2003; 302(4):869–872.

    PubMed  CAS  Google Scholar 

  108. Colaluca IN, Tosoni D, Nuciforo P et al. NUMB controls p53 tumour suppressor activity. Nature 2008; 451(7174):76–80.

    PubMed  CAS  Google Scholar 

  109. Carter S, Vousden KH. A role for Numb in p53 stabilization. Genome Biol 2008; 9(5):221.

    PubMed  Google Scholar 

  110. Kolev V, Mandinova A, Guinea-Viniegra J et al. EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nat Cell Biol 2008; 10(8):902–911.

    PubMed  CAS  Google Scholar 

  111. Pei XH, Nakanishi Y, Takayama K et al. Benzo[a]pyrene activates the human p53 gene through induction of nuclear factor kappaB activity. J Biol Chem 1999; 274(49):35240–35246.

    PubMed  CAS  Google Scholar 

  112. Lee HO, Lee JH, Kim TY et al. Regulation of DeltaNp63alpha by tumor necrosis factor-alpha in epithelial homeostasis. FEBS J 2007; 274(24):6511–6522.

    PubMed  CAS  Google Scholar 

  113. De Laurenzi V, Raschella G, Barcaroli D et al. Induction of neuronal differentiation by p73 in a neuroblastoma cell line. J Biol Chem 2000; 275(20):15226–15231.

    PubMed  Google Scholar 

  114. Hooper C, Tavassoli M, Chapple JP et al. TAp73 isoforms antagonize Notch signalling in SH-SY5Y neuroblastomas and in primary neurones. J Neurochem 2006; 99(3):989–999.

    PubMed  CAS  Google Scholar 

  115. Wang Y, Chan SL, Miele L et al. Involvement of Notch signaling in hippocampal synaptic plasticity. Proc Natl Acad Sci USA 2004; 101(25):9458–9462.

    PubMed  CAS  Google Scholar 

  116. Costa RM, Honjo T, Silva AJ. Learning and memory deficits in Notch mutant mice. Curr Biol 2003; 13(15):1348–1354.

    PubMed  CAS  Google Scholar 

  117. Alvarez AR, Sandoval PC, Leal NR et al. Activation of the neuronal c-Abl tyrosine kinase by Amyloid-beta-peptide and reactive oxygen species. Neurobiol Dis 2004; 17(2):326–336.

    PubMed  CAS  Google Scholar 

  118. Yang X, Klein R, Tian X et al. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev Biol 2004; 269(1):81–94.

    PubMed  CAS  Google Scholar 

  119. Morrison SJ, Csete M, Groves AK et al. Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J Neurosci 2000; 20(19):7370–7376.

    PubMed  CAS  Google Scholar 

  120. Studer L, Csete M, Lee SH et al. Enhanced proliferation, survival and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 2000; 20(19):7377–7383.

    PubMed  CAS  Google Scholar 

  121. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003; 9(6):677–684.

    PubMed  CAS  Google Scholar 

  122. Gustafsson MV, Zheng X, Pereira T et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 9(5):617–628.

    PubMed  CAS  Google Scholar 

  123. Ravi R, Mookerjee B, Bhujwalla ZM et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 2000; 14(1):34–44.

    PubMed  CAS  Google Scholar 

  124. Kimura T, Tomooka M, Yamano N et al. AKT signaling promotes derivation of embryonic germ cells from primordial germ cells. Development 2008; 135(5):869–879.

    PubMed  CAS  Google Scholar 

  125. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 2001; 98(20):11598–11603.

    PubMed  CAS  Google Scholar 

  126. Palomero T, Dominguez M, Ferrando AA. The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia. Cell Cycle 2008; 7(8):965–970.

    PubMed  CAS  Google Scholar 

  127. Nicolas M, Wolfer A, Raj K et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 2003; 33(3):416–421.

    PubMed  CAS  Google Scholar 

  128. Lee J, Basak JM, Demehri S et al. Bi-compartmental communication contributes to the opposite proliferative behavior of Notch1-deficient hair follicle and epidermal keratinocytes. Development 2007; 134(15):2795–2806.

    PubMed  CAS  Google Scholar 

  129. Mammucari C, Tommasi di Vignano A, Sharov AA et al. Integration of Notch 1 and calcineurin/NFAT signaling pathways in keratinocyte growth and differentiation control. Dev Cell 2005; 8(5):665–676.

    PubMed  CAS  Google Scholar 

  130. Estrach S, Cordes R, Hozumi K et al. Role of the Notch ligand Delta1 in embryonic and adult mouse epidermis. J Invest Dermatol 2008; 128(4):825–832.

    PubMed  CAS  Google Scholar 

  131. Proweller A, Tu L, Lepore JJ et al. Impaired notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res 2006; 66(15):7438–7444.

    PubMed  CAS  Google Scholar 

  132. Henning K, Heering J, Schwanbeck R et al. Notch1 activation reduces proliferation in the multipotent hematopoietic progenitor cell line FDCP-mix through a p53-dependent pathway but Notch1 effects on myeloid and erythroid differentiation are independent of p53. Cell Death Differ 2008; 15(2):398–407.

    PubMed  CAS  Google Scholar 

  133. Mandinova A, Lefort K, Tommasi di Vignano A et al. The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response. EMBO J 2008; 27(8):1243–1254.

    PubMed  CAS  Google Scholar 

  134. Lee JH, An HT, Chung JH et al. Acute effects of UVB radiation on the proliferation and differentiation of keratinocytes. Photodermatol Photoimmunol Photomed 2002; 18(5):253–261.

    PubMed  CAS  Google Scholar 

  135. Polyak K, Waldman T, He TC et al. Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev 1996; 10(15):1945–1952.

    PubMed  CAS  Google Scholar 

  136. Gadea G, de Toledo M, Anguille C et al. Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J Cell Biol 2007; 178(1):23–30.

    PubMed  CAS  Google Scholar 

  137. Rocco JW, Leong CO, Kuperwasser N et al. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 2006; 9(1):45–56.

    PubMed  CAS  Google Scholar 

  138. Niimi H, Pardali K, Vanlandewijck M et al. Notch signaling is necessary for epithelial growth arrest by TGF-beta. J Cell Biol 2007; 176(5):695–707.

    PubMed  CAS  Google Scholar 

  139. Cordenonsi M, Dupont S, Maretto S et al. Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 2003; 113(3):301–314.

    PubMed  CAS  Google Scholar 

  140. Alimirah F, Panchanathan R, Davis FJ et al. Restoration of p53 expression in human cancer cell lines upregulates the expression of Notch1: implications for cancer cell fate determination after genotoxic stress. Neoplasia 2007; 9(5):427–434.

    PubMed  CAS  Google Scholar 

  141. Secchiero P, Melloni E, di Iasio MG et al. Nutlin-3 up-regulates the expression of Notch1 in both myeloid and lymphoid leukemic cells, as part of a negative feedback antiapoptotic mechanism. Blood 2009; 113(18):4300–4308.

    PubMed  CAS  Google Scholar 

  142. Osipo C, Patel P, Rizzo P et al. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Oncogene 2008; 27(37):5019–5032.

    PubMed  CAS  Google Scholar 

  143. Mungamuri SK, Yang X, Thor AD et al. Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res 2006; 66(9):4715–4724.

    PubMed  CAS  Google Scholar 

  144. Beverly LJ, Felsher DW, Capobianco AJ. Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. Cancer Res 2005; 65(16):7159–7168.

    PubMed  CAS  Google Scholar 

  145. Demarest RM, Ratti F, Capobianco AJ. It’s T-ALL about Notch. Oncogene 2008; 27(38):5082–5091.

    PubMed  CAS  Google Scholar 

  146. Beverly LJ, Capobianco AJ. Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T-cell leukemogenesis. Cancer Cell 2003; 3(6):551–564.

    PubMed  CAS  Google Scholar 

  147. Sun L, Goodman PA, Wood CM et al. Expression of aberrantly spliced oncogenic ikaros isoforms in childhood acute lymphoblastic leukemia. J Clin Oncol 1999; 17(12):3753–3766.

    PubMed  CAS  Google Scholar 

  148. Sun L, Crotty ML, Sensel M et al. Expression of dominant-negative Ikaros isoforms in T-cell acute lymphoblastic leukemia. Clin Cancer Res 1999; 5(8):2112–2120.

    PubMed  CAS  Google Scholar 

  149. Sun L, Heerema N, Crotty L et al. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci USA 1999; 96(2):680–685.

    PubMed  CAS  Google Scholar 

  150. Uren AG, Kool J, Matentzoglu K et al. Large-scale mutagenesis in p19(ARF)-and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 2008; 133(4):727–741.

    PubMed  CAS  Google Scholar 

  151. Liu M, Taketani T, Li R et al. Loss of p73 gene expression in lymphoid leukemia cell lines is associated with hypermethylation. Leuk Res 2001; 25(6):441–447.

    PubMed  CAS  Google Scholar 

  152. Weng AP, Millholland JM, Yashiro-Ohtani Y et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20(15):2096–2109.

    PubMed  CAS  Google Scholar 

  153. Ronchini C, Capobianco AJ. Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 2001; 21(17):5925–5934.

    PubMed  CAS  Google Scholar 

  154. Weijzen S, Rizzo P, Braid M et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 2002; 8(9):979–986.

    PubMed  CAS  Google Scholar 

  155. Reedijk M, Odorcic S, Chang L et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 2005; 65(18):8530–8537.

    PubMed  CAS  Google Scholar 

  156. Chapman G, Liu L, Sahlgren C et al. High levels of Notch signaling down-regulate Numb and Numblike. J Cell Biol 2006; 175(4):535–540.

    PubMed  CAS  Google Scholar 

  157. Koch U, Radtke F. Notch and cancer: a double-edged sword. Cell Mol Life Sci 2007; 64(21):2746–2762.

    PubMed  CAS  Google Scholar 

  158. Rossi M, De Laurenzi V, Munarriz E et al. The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J 2005; 24(4):836–848.

    PubMed  CAS  Google Scholar 

  159. Junttila MR, Evan GI. p53—a Jack of all trades but master of none. Nat Rev Cancer 2009; 9(11):821–829.

    PubMed  CAS  Google Scholar 

  160. Niranjan T, Bielesz B, Gruenwald A et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med 2008; 14(3):290–298.

    PubMed  CAS  Google Scholar 

  161. Matesic LE, Copeland NG, Jenkins NA. Itchy mice: the identification of a new pathway for the development of autoimmunity. Curr Top Microbiol Immunol 2008; 321:185–200.

    PubMed  CAS  Google Scholar 

  162. High FA, Epstein JA. The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet 2008; 9(1):49–61.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Roemer, K. (2012). Notch and the p53 Clan of Transcription Factors. In: Reichrath, J., Reichrath, S. (eds) Notch Signaling in Embryology and Cancer. Advances in Experimental Medicine and Biology, vol 727. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0899-4_17

Download citation

Publish with us

Policies and ethics